Литмир - Электронная Библиотека
Содержание  
A
A

Так, при образовании ферромагнетика магнитные моменты электронов выстраиваются параллельно друг другу. То есть, происходит упорядочивание, но не положений частиц, а их ориентаций в пространстве. А упорядочение неизбежно сопровождается снижением энтропии, энергии взаимодействия, тоже выделяемой в форме тепла (при обратном переходе тепло поглощается, на чём основан принцип магнитного охлаждения). И, хотя считают, что фазовые переходы происходят без отдачи теплоты, и что этим они существенно отличаются от фазовых переходов первого рода, реально они, как покажем далее, выделяют скрытое тепло ничуть не хуже. Тем самым, устраняется принципиальное различие между фазовыми переходами первого и второго родов, а, значит, рушатся все представления об исключительности переходов 2-го рода, и становится бессмысленной и ненужной вся их феноменологическая теория, построенная Л. Ландау и В. Гинзбургом, во многом, — на базе квантового подхода. В действительности, фазовые переходы первого и второго рода — совершенно симметричны, подобны, имея одинаковую классическую природу. Разница у них не принципиальная, а количественная, и заключается она в ширине температурного интервала, в пределах которого происходит фазовый переход.

Правильную теорию фазовых переходов второго рода и их связи со степенью симметрии начал развивать ещё Пьер Кюри, как специалист по физической химии, основательно изучивший кристаллы и переход парамагнетик-ферромагнетик. Однако ранняя трагическая смерть помешала Кюри закончить эту грандиозную классическую работу, важную роль которой отмечал наш выдающийся кристаллограф А.В. Шубников [156]. Примечательно, что его однофамилец и современник Л.В. Шубников (по вине Ландау погибший ещё более рано и трагично, чем Кюри) был пионером советской физики низких температур и основателем передовой отечественной криогенной лаборатории, исследователем сверхпроводимости, магнетизма, фазовых переходов второго рода, кристаллов и процесса кристаллизации, что ещё раз отражает их тесную связь. Далее рассмотрим подробнее некоторые из переходов второго рода.

§ 4.19 Магнетизм и ферромагнетизм

Мне остаётся сказать, по какому закону природы
Может железо к себе притягивать камень, который
Греки "магнитом" зовут по названию месторожденья…
Прежде всего из магнита должны семена выделяться
Множеством или же ток истекать, разбивая толчками
Воздух, который везде между камнем лежит и железом.
Только что станет пустым пространство меж ними, и много
Места очистится там, как тотчас же, общею кучей,
Первоначала туда стремглав устремятся железа…
Дело ведь в том, что к тому побуждают извне их удары…
Будто бы сзади толкает кольцо и уносит, и гонит.
Ведь ударяет всегда окружающий воздух предметы.
Тит Лукреций Кар, "О природе вещей", I в. до н. э. [77]

Природа магнетизма уже была раскрыта ранее (§ 1.7, § 3.19). По гипотезе Ампера, магниты и ферромагнитные материалы притягиваются, за счёт существующих в них элементарных круговых молекулярных токов. Взаимодействие электрических токов, переносимое потоками реонов и ареонов, источаемых магнитами, и вызывает их притяжение (или отталкивание). Что самое удивительное, такую гипотезу магнитного взаимодействия ещё две тысячи лет назад выдвигали Демокрит и Лукреций, говорившие, что его осуществляют элементарные частицы магнитов и железа, посредством источаемых ими токов, пронизывающих ткань магнита и железа. По их гипотезе, те же мельчайшие семена, частицы (реоны), что постоянно источаются телами и переносят свет, оказывают и магнитное воздействие, имеющее электрическое происхождение, в полном согласии с гипотезой Ритца. Казалось бы, эти истечения способны лишь отталкивать предметы. Но Лукреций удивительным образом смог объяснить притяжение тем, что атомы железа, постоянно ударяемые частицами окружающего воздуха, при поднесении магнита испытывают больше таких ударов с внешней стороны, поскольку частицы, источаемые магнитом, расчищают своими ударами пространство до железного тела. Именно так, по реонной гипотезе, осуществляется притяжение: ареоны, выбрасываемые позитроном, расчищают пространство до электрона, и, потому, удары внешнего, сходящегося реонного потока подталкивают электрон навстречу позитрону (§ 3.20). Небольшое преобладание этого притяжения зарядов над отталкиванием и порождает силу притяжения магнитов. Лукреций первым произвёл и классификацию тел по магнитным свойствам, аналогичную современному разделению на диа-, пара- и ферромагнетики. Этот античный исследователь и популяризатор атомистического учения Демокрита догадался, что нет принципиальной разницы между магнитными и немагнитными телами: просто одни реагируют на магнитные токи в большей степени, а другие — в меньшей, — тела обладают разной магнитной восприимчивостью и проницаемостью [77]. Удивительное прозрение!

С чем же связано наличие магнитных свойств у одних тел и отсутствие у других? В настоящее время магнетизм и ферромагнетизм причисляют к квантовым явлениям, хотя, в действительности, — это рядовые, классические феномены. Не зря, первое объяснение ферромагнетизма было дано ещё век назад Пьером Кюри — целиком в рамках классической науки. Он объяснил ферромагнетизм спонтанной намагниченностью. Магнитные моменты атомов, взаимно влияя друг на друга, одинаково выстраиваются вдоль одного направления. В итоге, их магнитные моменты складываются, тем самым создавая заметные магнитные поля вещества. С увеличением температуры, от беспорядочного движения атомов, магнитные моменты рассогласуются и спонтанная намагниченность выше некоторой температуры (точки Кюри) исчезает. Имеет место переход ферромагнетик-парамагнетик. Этот фазовый переход не содержит ничего сверхъестественного и его ни к чему считать переходом второго рода, — этой лишней сущности, введённой Эренфестом и Ландау, вопреки принципу Оккама. Реально, в процессе перехода парамагнетик-ферромагнетик выделяется тепло, как во всех переходах первого рода. Однако, этот переход происходит не резко, а растянут в некотором температурном интервале, поэтому выделение и поглощение тепла воспринимается как рост теплоёмкости ферромагнетика. Теплоёмкость стремится к бесконечности с приближением к точке перехода (точке Кюри). Поэтому, скрытую теплоту таких переходов можно найти, как площадь, заключённую под кривой теплоёмкости. Этот вопрос будет подробней рассмотрен в следующем разделе (§ 4.20).

В таком переходе тепло не может не выделяться, поскольку образование ферромагнетика связано с большей степенью упорядоченности: атомы и электроны в них расположены упорядоченно не только по своим координатам, но и по направлениям, образуя кристалл более высокой степени симметрии — "сверхкристалл". Раздельно с упорядочением по координатам и по направлениям частиц (их моментов) мы встречаемся в обычных и в жидких кристаллах, а у ферромагнетиков эти свойства совмещены в форме сверхкристаллического состояния высшего порядка. Именно это упорядочение неизбежно ведёт к снижению энтропии, с выделением соответствующей энергии в некотором температурном интервале. И, лишь из-за того, что это тепловыделение растянуто, его интерпретируют как рост теплоёмкости. Для охлаждения на один градус необходимо не только отнимать тепло, связанное с кинетической энергией беспорядочного движения атомов, но и внутреннее тепло, постепенно выделяющееся в переходе. Существование скрытой теплоты перехода подтверждает и магнитокалорический эффект, — выделение тепла при намагничивании ферромагнетика, словно при кристаллизации.

В том, что ферромагнетизм не имеет отношения к квантовой теории, а объясняется чисто механически, с помощью классических теорий, следует уже из существования пьезомагнитного и обратного пьезомагнитного эффекта, то есть, — намагничивания ферромагнитных материалов под действием давления, деформации. Именно за счёт этого эффекта намагничиваются, со временем, острия ножниц, отвёртки, ножи мясорубок. Связано это с тем, что пластическая деформация приводит к перестройке внутренней структуры металла и чисто механическому упорядочиванию в расположении его атомов и зёрен, что хорошо заметно на протравленных срезах металла. Механическое упорядочивание в расположении атомов и приводит к сонаправленному расположению их магнитных моментов, прежде ориентированных случайным образом. Пластические деформации вызывают постоянные перестройки атомной структуры — в энергетически более выгодную, снижающую энергию взаимодействия, что достигается при сонаправленном расположении магнитных моментов атомов. Не составит большого труда объяснить с классических позиций и все другие особенности ферромагнетизма, в том числе, — кривую намагничивания, а также явления пара-, диа- и антиферромагнетизма.

155
{"b":"149327","o":1}