Литмир - Электронная Библиотека
Содержание  
A
A

§ 5.13 Инженерно-механический подход в науке

Я — чистейший материалист. Ничего не признаю, кроме материи. В физике, химии и биологии я вижу одну механику. Весь космос только бесконечный и сложный механизм.

К.Э. Циолковский [69]

В современной науке царит формальный, аналитический способ описания явлений, причём сущность явлений не проясняется формулами (как, скажем, в классической физике), а затемняется (как в кванторелятивистской теории). Необходимо помнить, что математика и формулы — это не самоцель, а лишь — инструменты науки, даже своего рода костыли. Математический формализм, условное принятие новых необоснованных гипотез, вроде правил квантования Бора или второго постулата СТО — это ненаучный метод. Суть же научного метода состоит в сведении всего к механике, к наглядному движению, соединению и распаду тел и частиц. В мире, как понял ещё Демокрит, нет ничего кроме материи, — частиц, носящихся в пустом пространстве. Лишь атомистическая, механическая модель мира будет истинно материалистичной, научной. К изучению природы надо подходить с инженерным методом, рассматривая её законы и объекты как механические конструкции, устроенные наиболее просто, красиво, гармонично, рационально, считая Природу гениальным инженером. Замысел одного инженера сможет понять лишь другой инженер. Поэтому для анализа творений природы надо мыслить творчески, инженерно, конструктивно, используя геометрию, механику, пространственное воображение. Как говорил Ломоносов, "Природа проста и не роскошествует излишними причинами". Мир устроен предельно просто и экономно, а потому законы природы вполне постижимы — в них нет сверхъестественного. Именно так сформулировал Оккам свой знаменитый принцип, и тем же руководствовался Коперник при построении новой системы мира. В нагромождениях запутанных и абстрактных формул, как в костылях и подпорках, нет ничего красивого. Они не отвечают реальному устройству мира, в отличие от простых механических моделей.

Когда наука уходила от наглядных механических аналогий, она заходила в тупик: в античности и средневековье, когда осмеивали атомистические идеи Демокрита и превозносили умозрительные фантазии Аристотеля; в новое время, когда наравне с атомизмом Ньютона и Ломоносова процветали абстрактные флюиды — теплород, флогистон, эфир; или сейчас, когда классическая механика частиц в опале, а превозносятся неопределённость и релятивизм. Многие учёные любят осмеивать грубые наглядные механические модели, считая их слишком примитивными, ненаучными и придавая чересчур большое значение идеальному, нематериальному, математическому, абстрактному описанию. Но, как показывает история науки, именно "грубые", простые механические модели, нередко построенные неспециалистами, обычными людьми, инженерами, — всегда сильней всего продвигали науку, были ключом к решению проблем. Именно так Демокрит построил атомистическую гипотезу, оказавшуюся величайшим прозрением и достижением античной науки. Но философы-идеалисты, такие как Аристотель, считавшие, что мир не может быть так грубо механистичен, а должен быть в основе своей идеален, абстрактен, математичен, критиковали Демокрита и всячески способствовали забвению его концепции. Так же и современники Циолковского критиковали его инженерные идеи, в их применении к фундаментальным вопросам физики и космологии. Так же и теперь академические круги критикуют механистические теории Ритца.

И всё же именно механистический, инженерный подход к явлениям оказывается истинно материалистическим, поскольку сводит все явления к немногим основным и известным, к наглядным моделям, по сути, к механике движения материальных частиц в пустоте. Любые тела и объекты, согласно этой материалистической теории, — это сочетания, конгломераты частиц разного уровня. И любая энергия — это, в конечном счёте, кинетическая энергия частиц (§ 1.14, § 3.16, § 5.14). То есть, именно механический подход соответствует принципу Оккама, — не вводить сверхъестественных, абстрактных объектов: флюидов, струн, искривлений пространства, — всех этих сложных умозрительных гипотез, покуда не исчерпаны возможности простых и классических. На этом всегда настаивал Вальтер Ритц. Другой известный физик У. Томсон (Лорд Кельвин) тоже считал механику основой всего и потому говорил: "Истинный смысл вопроса: понимаем ли мы, или не понимаем физическое явление? — сводится к следующему: можем ли мы построить собственную механическую модель или нет?". Недаром Томсон, как последователь механицизма, был одним из активных и сильных защитников классической физики, и считал, что опыт Майкельсона и излучение чёрного тела имеют классическое, но пока не найденное объяснение.

Томсону же мы во многом обязаны развитием молекулярно-кинетической теории и приложением её к различным разделам физики, в том числе к электродинамике и гравитации (именно Томсон возродил корпускулярную теорию тяготения Лесажа, аналогичную теории Ритца). Такой атомистический, механистический взгляд на вещи всегда существенно продвигал науку вперёд. Классическая механическая картина мира дала науке важнейшие законы сохранения массы, энергии, импульса, заряда и т. д. Отказ же от механических моделей приводит к забвению этих доставшихся таким трудом законов. Во всём следует опираться на факты и лишь на их основе строить теорию, как учил ещё литературный герой Шерлок Холмс, иначе мы рискуем отдаться во власть пустого фантазирования, абстрактного формализма, не имеющего отношения к реальности. Так, Эйнштейн признался, что свою теорию он строил не на основе опытных фактов, а чисто умозрительно. А ведь факты — это воздух учёного, без которого наука задохнётся. Надо лишь по рецепту Холмса верно их истолковать, отобрать из них несомненные, освободив от домыслов обывателей. Впрочем, груда фактов не есть наука, равно как куча кирпичей не есть здание. Чтобы правильно понять, систематизировать, связать воедино факты, без подгонок встроить их в здание научной теории, надо владеть правильным методом познания. Без него научный поиск подобен слепому блужданию. Возможно, поэтому сейчас от развращения ума абстрактными, нематериалистическими, ненаучными теориями и забвения правильных методов познания, измельчали открытия, ставшие не плодом планомерного поиска, а уделом редких учёных, случайно натыкающихся на частные решения.

Правильный и рациональный метод исследований развивается обычно у инженеров — их мышление по самой своей структуре конструктивно, чуждо пустой философии и бессмысленным абстракциям. Ведь пропитавший нынешнюю науку абстрактно-теоретический подход по определению отвлечён, отдалён от реальности, отчего порождает неклассические теории, не имеющие к ней отношения и физического смысла, тогда как инженерный подход максимально приближен к реальности. Именно поэтому во все времена наиболее смелые, новаторские, интересные и правильные физические идеи выдвигали именно люди с инженерным, техническим складом ума, любящие мастерить, конструировать: Архимед, Герон, Леонардо да Винчи, Коперник, Галилей, Ньютон, Ломоносов, Кулибин, Ритц, Тесла, Циолковский, Белопольский, Мейман, Дуплищев. Так, к примеру, Леонардо да Винчи первым построил правильную теорию полёта снарядов по баллистической траектории, вопреки господствующей механике Аристотеля. Леонардо был разносторонним инженером, спроектировавшим множество построек и машин будущего, в том числе, — первого бронетранспортёра, подобно современным БТРам имеющего бипирамидальный, биконический корпус и способного вести огонь во всех направлениях (см. рисунок на последней странице книги). Не случайно Леонардо в своих оптических исследованиях развивал атомистическую баллистическую теорию света Демокрита и Эпикура, по которой тела разбрасывают во всех направлениях световые частицы (образы), образующие последовательные сферические фронты, чем объяснял волновые свойства света (см. Леонардо да Винчи. Избранные произведения. М.: Ладомир, 1995).

183
{"b":"149327","o":1}