Литмир - Электронная Библиотека
Содержание  
A
A

Как пространственная модель волнового пакета не имеет вполне определенной длины волны, колебательная модель во времени не имеет определенной частоты. Разброс значений зависит от продолжительности колебаний. А поскольку квантовая теория связывает частоту волны с энергией частицы, разброс по частоте колебаний соответствует неопределенности энергии частицы. Поэтому неопределенность локализации события во времени соотносится с неопределенностью энергии, как неопределенность координаты частицы — с неопределенностью ее импульса. Мы никогда не сможем одинаково точно определить время, когда состоялось событие, а также количество энергии, которое при этом было задействовано. Явления, происходящие за короткий период времени, характеризуются значительной неопределенностью энергии, а явления, в которых участвует определенное количество энергии, могут быть локализованы только внутри продолжительных промежутков времени.

Фундаментальное значение принципа неопределенности заключается в том, что он описывает ограниченность наших классических концепций в точной математической форме. Субатомный мир предстает перед учеными в виде паутины взаимосвязей между различными частями целого. Положения классической физики, почерпнутые из привычной макроскопической действительности, не могут адекватно описать этот мир. Понятие самостоятельной физической единицы — например, частицы — абстрактно. Оно может быть определено только в категориях его связи с целым, но последние носят статистический характер. Это вероятности, а не определенности. Если мы попытаемся описать свойства таких сущностей с помощью классических терминов — координата, энергия, импульс и т. д., — то обнаружим, что существуют пары взаимосвязанных понятий, которые не могут быть одновременно точно определены. Чем больше мы стараемся применить одно понятие к физическому «объекту», тем более неопределенным становится другое. Точное соотношение между двумя такими понятиями как раз и создает принцип неопределенности.

Чтобы лучше понимать соотношение между парами наборов понятий классической физики, Нильс Бор ввел «принцип дополнительности». Он рассматривал картины частицы и волны в качестве взаимодополняющих описаний одной реальности, каждое из которых истинно частично и имеет ограниченное применение. Для полного описания мира атомов необходимы оба подхода, и их применение ограничено принципом неопределенности.

Понятие дополнительности прочно заняло свое место в современной физике. Бор часто говорил, что оно может применяться и за рамками физики. И действительно, понятие дополнительности уже 2500 лет тому назад играло важную роль в древнекитайской философии. Ее последователи считали, что противоположные понятия связаны между собой отношениями полярности, или дополнительности. Китайские мыслители обозначали дополнительность противоположностей при помощи инь и ян, двух исконных начал, рассматривая их динамическое взаимодействие как суть всех явлений природы и отношений между людьми.

Нильс Бор хорошо знал, что его концепция дополнительности имеет параллели в китайской философии. Посетив Китай в 1937 г., когда интерпретация квантовой теории была уже разработана, он был глубоко поражен тем, что в древней китайской философии существовало представление о полярных противоположностях. Бор и позже интересовался восточной культурой. Через 10 лет ему было пожаловано дворянское звание в знак признания его выдающихся научных достижений и важного вклада в культуру Дании. Когда ему нужно было избрать символ для своего герба, его выбор пал на китайский тайцзи, который выражает дополнительность между противоположными началами инь и ян. Выбрав этот символ вместе с изречением Contraria sunt complementa («Противоположности дополняют друг друга»), Бор признал существование глубокой гармонии между древней восточной мудростью и современной западной наукой (рис. 18).

Дао физики. Исследование параллелей между современной физикой и восточной философией - i_019.jpg

Рис. 18. Герб Нильса Бора. Из книги воспоминаний, составитель С. Розенталь (North-Holland Publishing Company, Amsterdam, 1967)

Глава 12. Пространственно-временной континуум

Современная физика подтвердила одно из основных положений восточного мистицизма: все используемые нами для описания природы понятия ограничены; это не факты, а продукты нашего мышления — части нарисованной карты, а не реальной местности. Когда расширяются границы наших знаний, становится очевидной ограниченность рационального мышления. Нам приходится менять понятия или даже отказываться от них.

Наши представления о пространстве и времени накладывают серьезный отпечаток на всю видимую картину мира. Они упорядочивают вещи и явления, окружающие нас, и исключительно важны не только для нашей повседневной жизни, но и для попыток понять природу через философию и науку. Нет закона физики, который можно сформулировать без понятий пространства и времени. Новое понимание этих двух базовых категорий привело к созданию теории относительности — одного из величайших революционных достижений в истории науки.

Классическая физика исходила из представлений об абсолютном трехмерном пространстве, существующем независимо от содержащихся в нем материальных объектов и подчиняющемся законам евклидовой геометрии; и о времени как о самостоятельной категории, опять же абсолютной, с постоянной скоростью, независимой от материального мира. На Западе эти представления были так глубоко укоренены в воззрениях философов и ученых, что в них видели истинные и не подвергаемые сомнению свойства природы.

Уверенность в том, что геометрия внутренне присуща природе, а не просто инструмент для описания мира, берет начало в Древней Греции. Практическая геометрия была основным разделом греческой математики и сильно повлияла на греческую философию. Последняя приняла на вооружение метод построения теорем на основе аксиом. При помощи дедукции и логических рассуждений из них выводили все теоремы, поэтому геометрия лежала в основе всей интеллектуальной деятельности греков и стала основой преподавания философии. Говорят, на воротах Академии Платона в Афинах было выбито изречение: «Вам не позволено заходить сюда, если вы не знаете геометрии». Греки верили, что их математические теоремы были выражениями вечных непреложных истин, а геометрические формы воплощают абсолютную красоту. Геометрия считалась совершенным соединением логического и прекрасного, поэтому ей приписывалось божественное происхождение. Отсюда и утверждение Платона: «Бог — геометр».

Поскольку геометрия рассматривалась как божественное откровение, греки считали очевидным, что небеса имеют правильную геометрическую форму, а небесные тела движутся по окружностям. Вдобавок считалось, что все они закреплены на концентрических хрустальных сферах, сферы движутся как единое целое и в центре всего находится Земля.

Позже греческая геометрия тоже сильно влияла на западную философию и науку. До начала XX в. «Элементы» Евклида использовались в европейских школах как основной учебник, и на протяжении более 2000 лет считалось, что евклидова геометрия отражает истинную сущность пространства. Чтобы заставить ученых и философов признать, что законы геометрии не свойственны природе изначально, а обязаны своей формулировкой разуму человека, нужен был Эйнштейн. Вот что по этому поводу говорил Генри Маргенау.

Главное открытие теории относительности заключается в том, что геометрия… продукт деятельности человеческого разума. Только признав этот факт, мы можем отказаться от устаревших представлений о времени и пространстве, чтобы исследовать пределы возможного в их новом познании и выбрать описание, которое не противоречит наблюдениям[149].

В отличие от греческой, восточная философия всегда утверждала, что пространство и время — порождения разума. Восточные философы относятся к ним так же, как ко всем понятиям, рожденным человеческим разумом: как к относительным, ограниченным и обманчивым. Так, в одном из буддийских сочинений говорится следующее.

вернуться

149

Schlip P.A., ed. Albert Einstein; Philosopher-Scientist. Evanston, Illinois: The library of Living Philosophers, 1949. P. 250.

32
{"b":"13083","o":1}