Литмир - Электронная Библиотека
Содержание  
A
A

Дальнейшие исследования показали, однако, что дело обстоит далеко не так просто. Померанчук в ряде работ показал, что при увеличении энергии обрезания физическое взаимодействие стремится к нулю независимо от величины голой постоянной связи. Почти одновременно к тому же результату пришли Паули и Челлен в так называемой модели Ли.

Корректность «нулификации» часто ставилась под вопрос. Модель Ли является весьма специальной и заметно отличается во многих отношениях от физических взаимодействий, поэтому строгость доказательств Померанчука подвергалась сомнению. На мой взгляд, эти сомнения неосновательны. Челлен, например, несколько раз ссылался на использование необычных свойств рядов, подлежащих суммированию, но ни разу не подтвердил свою точку зрения. Ныне «нулификация» молчаливо признается даже теми физиками, которые вслух оспаривают ее. Это ясно, поскольку почти полностью исчезли работы по мезонной теории, и особенно очевидно из замечания Дайсона о том, что корректная теория будет построена в следующем столетии, – пессимизм, который был бы непонятен, если считать, что существующая мезонная теория ведет к конечным результатам, которые мы пока не в состоянии извлечь из нее. Поэтому мне представляются несвоевременными попытки улучшить доказательства Померанчука. Ввиду краткости жизни мы не можем позволить себе роскошь тратить время на задачи, которые не ведут к новым результатам.

Обращение в нуль точечных взаимодействий в существующей теории приводит к мысли о необходимости использования «размазанных», нелокальных взаимодействий. К несчастью, нелокальный характер взаимодействия делает вполне бесполезным аппарат существующей теории. Нежелательность этого обстоятельства является, конечно, плохим доводом против нелокальности теории, однако существуют и более основательные возражения. Все результаты, полученные в квантовой теории поля, без использования конкретных предположений о виде гамильтониана, по-видимому, подтвердились на эксперименте. Речь идет в первую очередь о дисперсионных соотношениях. Более того, число мезонов, образующихся в столкновениях при больших энергиях, находится в согласии с формулой Ферми, вывод которой основан на использовании представлений статистической термодинамики на расстояниях гораздо меньших, чем любой возможный радиус взаимодействия.

Возможное существенное изменение существующей теории без отказа от локальности взаимодействия впервые предложил Гейзенберг. Помимо общей идеи Гейзенберг добавляет еще и ряд других предположений, которые мне представляются сомнительными. Я попытаюсь поэтому обрисовать ситуацию в той форме, которая кажется мне наиболее убедительной.

Почти тридцать лет назад Пайерлс и я указали, что, согласно релятивистской квантовой теории, нельзя измерить никакие величины, характеризующие взаимодействующие частицы, и единственными измеримыми величинами являются импульс и поляризация свободно движущихся частиц. Поэтому, если мы не хотим пользоваться ненаблюдаемыми величинами, мы должны вводить в теорию в качестве фундаментальных величин только амплитуды рассеяния.

Операторы, содержащие ненаблюдаемую информацию, должны исчезнуть из теории, и, поскольку гамильтониан можно построить только из операторов, мы с необходимостью приходим к выводу, что гамильтонов метод в квантовой механике изжил себя и должен быть похоронен, конечно, со всеми почестями, которые он заслужил.

Основой для новой теории должна служить новая диаграммная техника, которая использует только диаграммы со «свободными» концами, то есть амплитуды рассеяния и их аналитические продолжения. Физическую основу этого аппарата образуют соотношения унитарности и принцип локальности взаимодействия, который проявляется в аналитических свойствах фундаментальных величин теории, например в различного рода дисперсионных соотношениях.

Поскольку такая новая диаграммная теория еще не построена, мы вынуждены находить аналитические свойства вершинных диаграмм, исходя из гамильтонова формализма. Однако нужно быть очень наивными, чтобы пытаться придать «строгость» такому выводу; нельзя забывать, что мы получаем реально существующие уравнения из гамильтонианов, которые в действительности не существуют.

В результате такого подхода к теории, в частности, окончательно теряет смысл старая проблема элементарности частиц, так как ее нельзя сформулировать, не вводя взаимодействий между частицами.

Мне кажется, что за последние годы теория заметно прогрессировала в указанном направлении и недалеко то время, когда будут окончательно написаны уравнения новой теории.

Нужно, однако, иметь в виду, что в этом случае, в отличие от ситуации, существовавшей ранее в теоретической физике, написание уравнений ознаменует не конец, а начало создания теории. Уравнения теории будут представлять собой бесконечную систему интегральных уравнений, каждое из которых имеет вид бесконечного ряда, и будет очень трудно научиться работать с такими уравнениями.

Сейчас, конечно, невозможно предсказать, сколько констант в теории можно будет выбрать произвольно. Мы не можем даже исключить возможность того, что уравнения вообще не будут иметь решений, то есть что в теории снова возникает «нулификация». Это можно будет рассматривать либо как строгое доказательство нелокальности природы, но это может означать и то, что не существует теории одних только сильных взаимодействий, и в общую схему должны быть включены также слабые взаимодействия, и особенно электродинамика. Тогда инфракрасная «катастрофа» бесконечно усложнит ситуацию.

Но даже в лучшем случае нам предстоит тяжелая борьба.

Краткая хронология жизни и деятельности Льва Давидовича Ландау (1908—1968)

1908, 22 января

В городе Баку в семье Любови Вениаминовны и Давида Львовича Ландау родился сын Лев.

1916

Лев Ландау поступает в гимназию.

1920

Лев поступает в Бакинский экономический техникум и через два года заканчивает его.

1922

Ландау успешно сдает вступительные экзамены в Азербайджанский государственный университет.

1924

Лев Ландау переводится на физико-математический факультет Ленинградского государственного университета.

1926

Опубликована первая научная работа Ландау «К теории спектров двухатомных молекул». Лев Ландау поступает в сверхштатную аспирантуру Ленинградского физико-технического института. Принимает участие в работе V съезда русских физиков в Москве (15—20 декабря).

1927

Лев Ландау заканчивает университет (20 января) и поступает в аспирантуру Ленинградского физико-технического института. В работе «Проблема торможения излучением» для описания состояния систем впервые вводит в квантовую механику новое важнейшее понятие – матрицу плотности.

1929, октябрь

По путевке Наркомпроса Ландау едет в полуторагодовую научную командировку за границу для продолжения образования (Берлин, Гёттинген, Лейпциг, Копенгаген, Кембридж, Цюрих). Он посещает семинары лучших физиков мира: Борна, Гейзенберга, Дирака, Паули, Бора, которого с этих пор считает своим учителем в физике.

1930

Публикация работы о диамагнетизме (впоследствии это явление получило название «диамагнетизма Ландау»).

1931, март

Ландау возвращается на Родину и продолжает работать в Ленинграде.

1932, август

Л.Д. Ландау переводится в Харьков заведующим теоретическим отделом Украинского физико-технического института (УФТИ).

1933

Не оставляя работы в УФТИ, Л.Д. Ландау становится заведующим кафедрой теоретической физики Харьковского механико-машиностроительного (ныне политехнического) института. Чтение курса лекций на физико-математическом факультете этого института.

66
{"b":"129048","o":1}