С помощью электротехнической аппаратуры Гриффин и Галамбос сумели обнаружить и исследовать физическую природу «криков» летучих мышей. Установили также, вводя особые электроды во внутреннее ухо подопытных зверьков, какой частоты звуки воспринимают органы их слуха.
Изучением этой проблемы занялись и другие исследователи. И вот что было установлено.
Эхопеленг
С физической точки зрения всякий звук — это колебательные движения, распространяющиеся волнообразно в упругой среде.
Чем больше вибраций совершает в секунду колеблющееся тело (или упругая среда), тем выше частота звука. Самый низкий человеческий голос (бас) обладает частотой колебаний около восьмидесяти раз в секунду, или, как говорят физики, частота его колебаний достигает восьмидесяти герц. Самый высокий голос (например, сопрано перуанской певицы Имы Сумак) около 1400 герц.
В природе и технике известны звуки еще более высоких частот — в сотни тысяч и даже миллионы герц. Рекордно высокий звук у кварца — до одного миллиарда герц! Мощность звука колеблющейся в жидкости кварцевой пластинки в 40 тысяч раз превышает силу звука мотора самолета. Но мы не можем оглохнуть от этого «адского грохота», потому что не слышим его. Человеческое ухо воспринимает звуки с частотой колебаний лишь от шестнадцати до двадцати тысяч герц. Более высокочастотные акустические колебания принято называть ультразвуками, их волнами летучие мыши и «ощупывают» окрестности.
Ультразвуки возникают в гортани летучей мыши. Здесь в виде своеобразных струн натянуты голосовые связки, которые, вибрируя, производят звук. Гортань ведь по своему устройству напоминает обычный свисток: выдыхаемый из легких воздух вихрем проносится через нее — возникает «свист» очень высокой частоты, до 150 тысяч герц (человек его не слышит).
Летучая мышь может периодически задерживать поток воздуха. Затем он с такой силой вырывается наружу, словно выброшен взрывом. Давление проносящегося через гортань воздуха вдвое больше, чем в паровом котле. Неплохое достижение для зверька весом 5-20 граммов!
В гортани летучей мыши возбуждаются кратковременные высокочастотные звуковые колебания — ультразвуковые импульсы. В секунду следует от 5 до 60, а у некоторых видов даже от 10 до 200 импульсов. Каждый импульс, «взрыв», длится всего 2–5 тысячных долей секунды (у подковоносов 5-10 сотых секунды).
Краткость звукового сигнала — очень важный физический фактор. Лишь благодаря ему возможна точная эхолокация, то есть ориентировка с помощью ультразвуков.
От препятствия, которое удалено на семнадцать метров, отраженный звук возвращается к зверьку приблизительно через 0,1 секунды. Если звуковой сигнал продлится больше 0,1 секунды, то его эхо, отраженное от предметов, расположенных ближе семнадцати метров, будет восприниматься органами слуха зверька одновременно с основным звучанием.
А ведь именно по промежутку времени между концом посылаемого сигнала и первыми звуками вернувшегося эха летучая мышь инстинктивно получает представление о расстоянии до предмета, отразившего ультразвук.
Поэтому звуковой импульс так краток.
Советский учёный Е. Я. Пумпер сделал в 1946 году очень интересное предположение, которое хорошо объясняет физиологическую природу эхолокации. Он считает, что летучая мышь каждый новый звук издает сразу же, после того как услышит эхо предыдущего сигнала. Таким образом, импульсы рефлекторно следуют друг за другом, а раздражителем, вызывающим их, служит эхо, воспринимаемое ухом. Чем ближе летучая мышь подлетает к препятствию, тем быстрее возвращается эхо и, следовательно, тем чаще издает зверек новые эхолотирующие «крики». Наконец при непосредственном приближении к препятствию звуковые импульсы начинают следовать друг за другом с исключительной быстротой. Это сигнал опасности. Летучая мышь инстинктивно изменяет курс полета, уклоняясь от направления, откуда отраженные звуки приходят слишком быстро.
Действительно, опыты показали, что летучие мыши перед стартом издают в секунду лишь 5-10 ультразвуковых импульсов. В полете учащают их до 30. При приближении к препятствию звуковые сигналы следуют еще быстрее — до 50–60 раз в секунду. Некоторые летучие мыши во время охоты на ночных насекомых, настигая добычу, издают даже 250 «криков» в секунду.
Эхолокатор летучих мышей — очень точный навигационный «прибор»: он в состоянии запеленговать даже микроскопически малый предмет — диаметром всего 0,1 миллиметра!
И только когда экспериментаторы уменьшили толщину проволоки, натянутой в помещении, где порхали летучие мыши, до 0,07 миллиметра, зверьки стали натыкаться на нее.
Летучие мыши наращивают темп эхолотирующих сигналов примерно за два метра от проволоки. Значит, за два метра они ее и «нащупывают» своими «криками». Но лету- чая мышь не сразу меняет направление, летит и дальше прямо на препятствие и лишь в нескольких сантиметрах от него резким взмахом крыла отклоняется в сторону.
С помощью сонаров[51], которыми их наделила природа, летучие мыши не только ориентируются в пространстве, но и охотятся за своим хлебом насущным: комарами, мотыльками и прочими ночными насекомыми.
В некоторых опытах зверьков заставляли ловить комаров в небольшом лабораторном зале. Их фотографировали, взвешивали — одним словом, все время следили за тем, насколько успешно они охотятся. Одна летучая мышь весом в семь граммов за час наловила грамм насекомых. Другая малютка, которая весила всего три с половиной грамма, так быстро глотала комаров, что за четверть часа «пополнела» на десять процентов. Каждый комар весит примерно 0, 002 грамма. Значит, за пятнадцать минут охоты было поймано 175 комаров — каждые шесть секунд один комар! Очень резвый темп.
Гриффин говорит, что если бы не сонар, то летучая мышь, даже всю ночь летая с открытым ртом, поймала бы «по закону случая» одного-единственного комара, и то если бы комаров вокруг было много.
Типы природных сонаров
До недавнего времени думали, что природными сонарами обладают только мелкие насекомоядные летучие мыши вроде наших ночниц и нетопырей, а крупные летающие лисицы и собаки, пожирающие тонны фруктов в тропических лесах, их будто бы лишены. Возможно, это так, но тогда, значит, роузеттус представляет исключение, потому что летающие собаки этого рода наделены эхолокаторами.
В полете роузеттусы все время щелкают языком. Звук прорывается наружу в углах рта, которые у роузеттуса всегда приоткрыты. Щелчки несколько напоминают своеобразное цоканье языком, к которому прибегают иногда люди, осуждая что-нибудь. Примитивный сонар летучей собаки работает, однако, достаточно точно: миллиметровую проволоку он засекает с расстояния в несколько метров.
Все без исключения мелкие летучие мыши из подотряда Microchiroptera, то есть микрорукокрылые, наделены эхолотами. Но модели этих «приборов» у них разные. В последнее время исследователи выделяют в основном три типа природных сонаров: шепчущий, скандирующий и стрекочущий, или частотно-модулирующий тип.
Шепчущие летучие мыши обитают в тропиках Америки. Многие из них подобно летучим собакам питаются фруктами. Ловят также и насекомых, но не в воздухе, а на листьях растений. Их эхолотирующие сигналы — очень короткие и очень тихие щелчки. Каждый звук длится тысячную долю секунды и очень слаб. Услышать его могут только очень чувствительные приборы. Иногда, правда, летучие мыши-шептуны «шепчут» так громко, что и человек их слышит. Но обычно сонар их работает на частотах 150 килогерц.
Знаменитый вампир тоже шептун. Нашептывая неведомые нам «заклинания», он отыскивает в гнилых лесах Амазонии измученных путешественников и сосет их кровь. Заметили, что собаки редко бывают искусаны вампирами: тонкий слух заранее предупреждает их о приближении кровососов. Собаки просыпаются и убегают. Ведь вампиры нападают только на спящих животных. Были сделаны даже такие опыты. Собак выдрессировали: когда слышали они «шепот» вампира, сейчас же начинали лаять и будили людей. Предполагается, что будущие экспедиции в американские тропики будут сопровождать эти дрессированные «вампиролокаторы».