Литмир - Электронная Библиотека
Содержание  
A
A

Скорее всего, в термоскопических глазах кальмаров восприятие излучающего тепло объекта достигается путем фотохимических реакций. Здесь происходят, вероятно, процессы такого же типа, как и на сетчатке обычного глаза или на фотопластинке в момент экспозиции. Поглощенная органом энергия приводит к перекомбинации светочувствительных (у кальмаров — теплочувствительных) молекул, которые воздействуют на нерв, вызывая в мозгу представление наблюдаемого объекта.

Термолокаторы змей действуют иначе — по принципу своеобразного термоэлемента.

Тончайшая мембрана, разделяющая две камеры лицевой ямки, подвергается с разных сторон воздействию двух разных температур. Внутренняя камера сообщается с внешней средой узким каналом, входное отверстие которого открывается в противоположную сторону от рабочего поля локатора. Поэтому во внутренней камере сохраняется температура окружающего воздуха. (Индикатор нейтрального уровня!) Наружная же камера широким отверстием — тепло- улавливателем направляется в сторону исследуемого объекта. Тепловые лучи, которые тот испускает, нагревают переднюю стенку мембраны. По разности температур на внутренней и наружной поверхности мембраны, одновременно воспринимаемых нервами, в мозгу и возникает ощущение излучающего тепловую энергию предмета.

Помимо ямкоголовых змей органы термолокации обнаружены у питонов и удавов (в виде небольших ямок на губах). Маленькие ямки, расположенные над ноздрями у африканской, персидской и некоторых других видов гадюк, служат, очевидно, для той же цели.

Разведка звуком

Что делал аббат на колокольне?

КУДА? и КАК? - i_017.png
етом 1793 года рано на рассвете учёный аббат Ладзаре Спалланцани залез на колокольню собора в Павии. Сумрак только начинал рассеиваться, и летучие мыши, возвращаясь из ночных полетов, прятались по разным закоулкам под сводами старой башни. Аббат ловил летучих мышей и сажал в мешок. Потом с мешком спустился с колокольни и пошел домой.

Там он их выпустил в комнате. От потолка к полу в ней были натянуты тонкие нити, много нитей, всю комнату они опутали. Выпуская каждую мышь, Спалланцани заклеивал ей глаза воском. И вот по старому залу заметались крылатые тени.

Но ни одна слепая летучая мышь не задела за нитку! Ни одна. Словно глаза им и не нужны были, чтобы видеть.

Спалланцани отпустил потом этих мышей на волю. А рано утром на следующий день опять полез на колокольню. Снова наловил летучих мышей. Среди них были и старые его знакомые — слепые зверьки. Он вскрыл их — желудки полны комаров! Значит, чтобы продуктивно, так сказать, охотиться, этим зверюшкам совсем не нужны глаза. Спалланцани решил, что летучие мыши наделены каким-то особенным, неведомым нам шестым чувством, которое и помогает им ориентироваться в полёте.

Швейцарский натуралист Шарль Жюрин узнал об опытах Спалланцани. Он повторил их; да, слепые мыши летают не хуже зрячих. Тогда Шарль Жюрин заткнул их уши воском.

Результат был неожиданным: летучие мыши перестали различать окружающие предметы, стали натыкаться на стены, точно слепые.

В чем дело? Не могут же они видеть ушами?

Спалланцани, когда узнал об опытах Шарля Жюрина, подумал вначале, что произошла какая-то ошибка. Он решил проверить, так ли это.

Спалланцани изготовил тонкие медные трубочки точно по размеру ушных отверстий летучих мышей. Кропотливая эта была работа: ведь приходилось отливать трубочки толщиной меньше миллиметра. Медные втулки вставили летучим мышам в уши, зверьки отлично летали и на препятствия не натыкались. Когда же трубочки заткнули воском, мыши «ослепли».

В чем же дело? Спалланцани знал об этом не больше своих критиков. А критиков объявилось много, и все дружно высмеивали аббата-фантазера.

Жорж Кювье, знаменитый французский анатом и палеонтолог, крупнейший авторитет в биологической науке того времени, тоже не хотел поверить, что слух имеет какое-то значение в ориентировке летучих мышей. Кювье выдвинул довольно остроумную гипотезу, которая должна была иначе объяснить таинственные способности летучих мышей.

Летучие мыши, говорил Кювье, обладают очень тонким осязанием. Особенно чувствительна у них кожа крыльев. Настолько чувствительна, что, приближаясь к препятствию, летучая мышь воспринимает сгущение воздуха, возникающее между ее телом и встречным предметом. Это служит сигналом: впереди препятствие! И «пилот» изменяет курс.

Больше ста лет продержалась в научных представлениях гипотеза Кювье. Лишь в середине нашего столетия с помощью новейших приборов удалось установить наконец истину[49].

К решению этой интересной проблемы ученые пришли почти одновременно в разных странах.

Голландец Свен Дийграаф решил проверить, действительно ли осязание помогает летучим мышам избегать препятствия. Он перерезал осязательные нервы крыльев — оперированные животные отлично летали. Значит, осязание здесь ни при чём. Тогда экспериментатор лишил летучих мышей слуха — они сразу точно ослепли.

Дийграаф рассуждал так: поскольку стены и предметы, встречающиеся летучим мышам в полете, не издают никаких звуков, значит, кричат сами мыши. Эхо их собственного голоса, отраженное от окружающих предметов, извещает зверюшек о препятствии на пути.

Дийграаф заметил, что летучая мышь, прежде чем пуститься в полет, раскрывает рот. Очевидно, издает неслышные для нас звуки, «ощупывая» ими окрестности. В полете летучие мыши тоже то и дело открывают рты (даже когда не охотятся за насекомыми).

Это наблюдение подало Дийграафу мысль проделать следующий эксперимент. Он надел на голову зверька бумажный колпак. Спереди, точно забрало у рыцарского шлема, в колпаке открывалась и закрывалась маленькая дверка.

Летучая мышь с закрытой дверкой на колпаке не могла летать, натыкалась на предметы. Стоило лишь в бумажном шлеме поднять забрало, как зверек преображался, его полет вновь становился точным и уверенным.

Свои наблюдения Дийграаф опубликовал в 1940 году. А в 1946 году советский ученый профессор А. П. Кузякин начал серии опытов над летучими мышами.

Он залепил им пластилином рот и уши и выпустил в комнате с натянутыми вдоль и поперек веревками — почти все зверьки не смогли летать. Экспериментатор установил интересный факт: летучие мыши, впервые пущенные в помещение для пробного полета с открытыми глазами, «многократно и с большой силой, как только что пойманные птицы, ударялись о стекла незанавешенных окон».

Это происходило днем. Вечером при свете электрической лампы мыши уже не натыкались на стекла. Значит, днем, когда хорошо видно, летучие мыши доверяют больше зрению, чем другим органам чувств. А ведь зрению летучих мышей многие исследователи склонны были совсем не придавать значения.

Профессор А. П. Кузякин продолжал опыты в лесу. На головы зверькам — рыжим вечерницам — он надел колпачки из черной бумаги. Зверьки не могли теперь ни видеть, ни употребить свой акустический радар. Летучие мыши не рискнули лететь в неизвестность Они раскрывали крылья и опускались на них, как на парашютах, на землю. Лишь некоторые отчаянные полетели на авось. Результат был печальным: они ударились о деревья и упали на землю.

Тогда в черных колпачках вырезали три отверстия: одно для рта, два для ушей. Зверьки без страха пустились в полет.

А. П. Кузякин пришел к выводу, что органы звуковой ориентировки летучих мышей «могут почти полностью заменить зрение, а органы осязания… никакой роли в ориентировке не играют, и зверьки ими в полете не пользуются».

Несколькими годами раньше американские ученые Д. Гриффин и Р. Галамбос[50] применили другую методику для изучения загадочных способностей летучих мышей.

Начали они с того, что просто поднесли этих зверюшек к аппарату Пирса — прибору, который мог «слышать» ультразвуки. И сразу же стало ясно, что летучие мыши «издают множество криков, но почти все они попадают в диапазон частот, лежащих за порогом возможностей человеческого уха», — писал Дональд Гриффин позднее.

вернуться

49

Правда, известный изобретатель пулемёта Айрем Максим ещё в 1912 году предполагал, что летучие мыши ориентируются, улавливая эхо от шума собственных крыльев. На этом же принципе он хотел сконструировать прибор, который предупреждал бы суда об айсбергах.

вернуться

50

Отличная книга Д. Гриффина «Эхо в жизни людей и животных» была переведена в 1961 году на русский язык издательством физико-математической литературы.

53
{"b":"128162","o":1}