Литмир - Электронная Библиотека
Содержание  
A
A

  Три биотических потока. В свете представлений М. б. совокупность явлений жизни можно рассматривать как результат сочетания трёх потоков: потока материи, находящего своё выражение в явлениях обмена веществ, т. е. ассимиляции и диссимиляции; потока энергии, являющейся движущей силой для всех проявлений жизнедеятельности; и потока информации, пронизывающего собой не только всё многообразие процессов развития и существования каждого организма, но и непрерывную череду сменяющих друг друга поколений. Именно представление о потоке информации, внесённое в учение о живом мире развитием М. б., накладывает на неё свой специфический, уникальный отпечаток.

  Важнейшие достижения молекулярной биологии. Стремительность, размах и глубину влияния М. б. на успехи в познании коренных проблем изучения живой природы справедливо сравнивают, например, с влиянием квантовой теории на развитие атомной физики. Два внутренне связанных условия определили это революционизирующее воздействие. С одной стороны, решающую роль сыграло обнаружение возможности изучения важнейших проявлений жизнедеятельности в простейших условиях, приближающихся к типу химических и физических экспериментов. С другой стороны, как следствие указанного обстоятельства, имело место быстрое включение значительного числа представителей точных наук — физиков, химиков, кристаллографов, а затем и математиков — в разработку биологических проблем. В своей совокупности эти обстоятельства и обусловили необычайно быстрый темп развития М. б., число и значимость её успехов, достигнутых всего за два десятилетия. Вот далеко не полный перечень этих достижений: раскрытие структуры и механизма биологической функции ДНК, всех типов РНК и рибосом , раскрытие генетического кода ; открытие обратной транскрипции , т. е. синтеза ДНК на матрице РНК; изучение механизмов функционирования дыхательных пигментов; открытие трёхмерной структуры и её функциональной роли в действии ферментов , принципа матричного синтеза и механизмов биосинтеза белков; раскрытие структуры вирусов и механизмов их репликации, первичной и, частично, пространственной структуры антител; изолирование индивидуальных генов , химический, а затем биологический (ферментативный) синтез гена, в том числе человеческого, вне клетки (in vitro); перенос генов из одного организма в другой, в том числе в клетки человека; стремительно идущая расшифровка химической структуры возрастающего числа индивидуальных белков, главным образом ферментов, а также нуклеиновых кислот; обнаружение явлений «самосборки» некоторых биологических объектов всё возрастающей сложности, начиная от молекул нуклеиновых кислот и переходя к многокомпонентным ферментам, вирусам, рибосомам и т. д.; выяснение аллостерических и других основных принципов регулирования биологических функций и процессов.

  Редукционизм и интеграция. М. б. является завершающим этапом того направления в изучении живых объектов, которое обозначается как «редукционизм», т. е. стремление свести сложные жизненные функции к явлениям, протекающим на уровне молекул и потому доступным изучению методами физики и химии. Достигнутые М. б. успехи свидетельствуют об эффективности такого подхода. Вместе с тем необходимо учитывать, что в естественных условиях в клетке, ткани, органе и целом организме мы имеем дело с системами возрастающей степени усложнённости. Такие системы образуются из компонентов более низкого уровня путём их закономерной интеграции в целостности, приобретающие структурную и функциональную организацию и обладающие новыми свойствами. Поэтому по мере детализации познаний о закономерностях, доступных раскрытию на молекулярном и примыкающих уровнях, перед М. б. встают задачи познания механизмов интеграции как линии дальнейшего развития в изучении явлений жизни. Отправной точкой здесь служит исследование сил межмолекулярных взаимодействий — водородных связей, ван-дер-ваальсовых, электростатических сил и т. д. Своей совокупностью и пространственным расположением они образуют то, что может быть обозначено как «интегративная информация». Её следует рассматривать как одну из главных частей уже упоминавшегося потока информации. В области М. б. примерами интеграции могут служить явления самосборки сложных образований из смеси их составных частей. Сюда относятся, например, образование многокомпонентных белков из их субъединиц, образование вирусов из их составных частей — белков и нуклеиновой кислоты, восстановление исходной структуры рибосом после разделения их белковых и нуклеиновых компонентов и т. д. Изучение этих явлений непосредственно связано с познанием основных феноменов «узнавания» молекул биополимеров. Речь идёт о том, чтобы выяснить, какие сочетания аминокислот — в молекулах белков или нуклеотидов — в нуклеиновых кислотах взаимодействуют между собой при процессах ассоциации индивидуальных молекул с образованием комплексов строго специфичного, наперёд заданного состава и строения. Сюда относятся процессы образования сложных белков из их субъединиц; далее, избирательное взаимовоздействие между молекулами нуклеиновых кислот, например транспортными и матричными (в этом случае существенно расширило наши сведения раскрытие генетического кода); наконец, это образование многих типов структур (например, рибосом, вирусов, хромосом), в которых участвуют и белки, и нуклеиновые кислоты. Раскрытие соответствующих закономерностей, познание «языка», лежащего в основе указанных взаимодействий, составляет одну из важнейших областей М. б., ещё ожидающую своей разработки. Эту область рассматривают как принадлежащую к числу фундаментальных проблем для всей биосферы.

Задачи молекулярной биологии. Наряду с указанными важными задачами М. б. (познанием закономерностей «узнавания», самосборки и интеграции) актуальным направлением научного поиска ближайшего будущего является разработка методов, позволяющих расшифровывать структуру, а затем и трёхмерную, пространственную организацию высокомолекулярных нуклеиновых кислот. В данное время это достигнуто в отношении общего плана трёхмерной структуры ДНК (двойной спирали), но без точного знания её первичной структуры. Быстрые успехи в разработке аналитических методов позволяют с уверенностью ждать достижения указанных целей на протяжении ближайших лет. Здесь, разумеется, главные вклады идут от представителей смежных наук, в первую очередь физики и химии. Все важнейшие методы, использование которых обеспечило возникновение и успехи М. б., были предложены и разработаны физиками (ультрацентрифугирование, рентгеноструктурный анализ, электронная микроскопия, ядерный магнитный резонанс и др.). Почти все новые физические экспериментальные подходы (например, использование ЭВМ, синхротронного, или тормозного, излучения, лазерной техники и др.) открывают новые возможности для углублённого изучения проблем М. б. В числе важнейших задач практического характера, ответ на которые ожидается от М. б., на первом месте стоит проблема молекулярных основ злокачественного роста, далее — пути предупреждения, а быть может, и преодоления наследственных заболеваний — «молекулярных болезней» . Большое значение будет иметь выяснение молекулярных основ биологического катализа, т. е. действия ферментов. К числу важнейших современных направлений М. б. следует отнести стремление расшифровать молекулярные механизмы действия гормонов , токсических и лекарственных веществ, а также выяснить детали молекулярного строения и функционирования таких клеточных структур, как биологические мембраны, участвующие в регуляции процессов проникновения и транспорта веществ. Более отдалённые цели М. б. — познание природы нервных процессов, механизмов памяти и т. д. Один из важных формирующихся разделов М. б. — т. н. генная инженерия, ставящая своей задачей целенаправленное оперирование генетическим аппаратом (геномом ) живых организмов, начиная с микробов и низших (одноклеточных) и кончая человеком (в последнем случае прежде всего в целях радикального лечения наследственных заболеваний и исправления генетических дефектов). О более обширных вмешательствах в генетическую основу человека речь может идти лишь в более или менее отдалённом будущем, т. к. при этом возникают серьёзные препятствия как технического, так и принципиального характера. В отношении микробов, растений, а возможно, и с.-х. животных такие перспективы весьма обнадёживающи (например, получение сортов культурных растений, обладающих аппаратом фиксации азота из воздуха и не нуждающихся в удобрениях). Они основаны на уже достигнутых успехах: изолирование и синтез генов, перенос генов из одного организма в другой, применение массовых культур клеток в качестве продуцентов хозяйственных или медицинских важных веществ.

77
{"b":"106144","o":1}