Литмир - Электронная Библиотека
Содержание  
A
A

  Долгое время не существовало экспериментальных методов, которые могли бы непосредственно подтвердить существование антиферромагнитной структуры. В 1949 было показано, что антиферромагнитную структуру можно обнаружить и изучить методами нейтронографии. Нейтроны не имеют электрического заряда, но обладают магнитным моментом. Пучок медленных нейтронов, проходящий через антиферромагнетик, взаимодействует с магнитными ионами вещества и испытывает рассеяние. Экспериментально получаемая зависимость числа рассеянных нейтронов от угла рассеяния позволяет определить расположение магнитных ионов в антиферромагнетике и среднее значение их магнитных моментов.

  За создание антиферромагнитного порядка и определённую ориентацию магнитных моментов ионов относительно кристаллографических осей ответственны два рода сил: за порядок — силы обменного взаимодействия (электрической природы), за ориентацию — силы магнитной анизотропии. В А. обменные силы стремятся установить каждую пару соседних магнитных моментов строго антипараллельно. Но они не могут предопределить направление моментов относительно кристаллографических осей. Это направление называется осью лёгкого намагничивания и определяется силами магнитной анизотропии. Последние представляют собой результат магнитного взаимодействия соседних магнитных ионов и более сложных взаимодействий электронов магнитных ионов с действующими внутри кристалла электрическими полями.

  В соответствии с этими двумя типами сил при теоретическом описании А. вводят 2 эффективных магнитных поля: обменное поле Не и поле анизотропии На. Представление о том, что в антиферромагнетике действуют 2 эффективных магнитных поля, позволяет объяснить многие свойства., в частности их поведение в переменных внешних магнитных полях. Переход из парамагнитного состояния в антиферромагнитное при температуре Нееля Tn происходит путём (фазового перехода2-го рода. Особенность этого перехода состоит в плавном (без скачка), но очень крутом нарастании среднего значения магнитного момента каждого иона вблизи Tn (рис. 3). Этим объясняются указанные выше аномалии — возрастание удельной теплоёмкости вблизи Tn и подобное ему температурное изменение коэффициента теплового расширения, модулей упругости и ряда др. величин.

  Изучение антиферромагнетиков внесло существенный вклад в развитие современных представлений о физике магнитных явлений. Открыты: новые типы магнитных структур — слабый ферромагнетизм, геликоидальные структуры и др. (см. Магнитная структура), обнаружены новые явления: пьезомагнетизм,магнетоэлектрический эффект, расширены представления об обменном и других типах взаимодействия в магнетиках. Практического применения А. пока не нашёл. Это связано с тем, что при переходе в антиферромагнитное состояние большая часть макроскопических физических свойств меняется мало. Исключение составляют высокочастотные свойства антиферромагнетиков. Во многих антиферромагнетиках наблюдается сильное резонансное поглощение электромагнитного излучения для длин волн от 1 см до 0,001 см (см. Антиферромагнитный резонанс).

  Лит.: Киренский Л. В., Магнетизм, 2 изд., М., 1967; Боровик-Романов А. С., Антиферромагнетизм, в сборнике: Антиферромагнетизм и ферриты, М., 1962 (Итоги науки. Физ.-мат. науки, т. 4); Редкоземельные ферромагнетики и антиферромагнетики, М., 1965.

  А. С. Боровик-Романов.

Большая Советская Энциклопедия (АН) - i008-pictures-001-290426797.jpg

Рис. 3. Температурная зависимость среднего значения магнитного момента

Большая Советская Энциклопедия (АН) - i-images-159542860.png
 иона в каждом узле подрешётки;
Большая Советская Энциклопедия (АН) - i-images-165310593.png
 — собственный магнитный момент иона.

Большая Советская Энциклопедия (АН) - i010-001-265027767.jpg

Большая Советская Энциклопедия (АН) - i-images-115399042.png
Рис. 1. Температурная зависимость магнитной восприимчивости c: а — для парамагнетика, не претерпевающего перехода в упорядоченное состояние вплоть до самых низких температур (c = С/Т); б — для парамагнетика, переходящего в антиферромагнитное состояние при Т = Tn; в — для поликристаллического антиферромагнетика; г — для монокристаллического антиферромагнетика вдоль оси лёгкого намагничивания (c||), д — для монокристаллического антиферромагнетика в направлениях, перпендикулярных оси лёгкого намагничивания (c^).

Большая Советская Энциклопедия (АН) - i010-001-283223962.jpg

Рис. 2. Магнитная структура: а — кубического антиферромагнетика MnO (период магнитной структуры аm в два раза больше периода кристаллической структуры ao), б — тетрагонального антиферромагнетика MnF2. Узлы с одинаковым направлением магнитных моментов образуют пространственную магнитную подрешётку.

Антиферромагнетик

Антиферромагне'тик, вещество, в котором установился антиферромагнитный порядок магнитных моментов атомов или ионов (см. Антиферромагнетизм). Обычно вещество становится А. ниже определённой температуры TN (см. Нееля точка) и остаётся А. вплоть до Т = 0 К. Среди элементов А. являются твёрдый кислород (a-модификация при Т < 24 К), хром (TN = 310 К), а также ряд редкоземельных металлов. В последних обычно наблюдаются сложные антиферромагнитные структуры в температурной области между TN и (OK < T1 < TN). При более низких температурах они становятся ферромагнетиками. Данные о наиболее известных А. — редких землях — приведены в таблице 1.

Таблица 1.

Элемент T1, K TN, K
Dy 85 179
Ho 20 133
Er 20 85
Tu 22 60
Tb 219 230

Таблица 2.

Соединение TN, K
MnO 120
FeO 190
CoO 290
NiO 650
MnF2 72
FeF2 250
CoF2 37,7
NiF2 73,2
MnSO4 12
FeSO4 21
CoSO4 12
NiSO4 37
MnCO3 32,5
FeCO3 35
CoCO3 38
NiCO3 25

  Число известных химических соединений, которые становятся А. при определённых температурах, приближается к тысяче. Ряд наиболее простых А. и их температуры TNприведены в табл. 2.

  Бо'льшая часть А. обладает значениями TN, лежащими существенно ниже комнатной температуры. Для всех гидратированных солей TN не превышает 10 К, например TN = 4,31 К у CuCl2·2H2O.

  Лит.: см. при ст. Антиферромагнетизм.

  А. С. Боровик-Романов.

Антиферромагнитный резонанс

Антиферромагни'тный резона'нс, одна из разновидностей электронного магнитного резонанса. А. р. проявляется как резкое возрастание поглощения электромагнитной энергии, проходящей через антиферромагнетик, при определённых (резонансных) значениях частоты ν и напряжённости приложенного магнитного поля Н. Для антиферромагнетиков характерно упорядоченное расположение магнитных моментов атомов (ионов) (см. Антиферромагнетизм). Одинаково ориентированные элементарные магнитные моменты образуют в антиферромагнетике так называемые магнитные подрешётки (в простейшем случае — две). При А. р. возбуждаются резонансные колебания векторов намагниченности подрешёток как относительно друг друга, так и относительно направления приложенного поля Н Вид зависимости ν от эффективных магнитных полей в антиферромагнетиках весьма сложен и различается для кристаллов разной структуры. Как правило, одному значению приложенного поля соответствуют две частоты А. р. Частоты А. р. лежат в интервале 10—1000 Ггц.

137
{"b":"105896","o":1}