* * *
Представление о том, чего достигли пифагорейцы в математике к началу деятельности Гиппократа Хиосского (ок. 440), можно получить, сопоставляя свидетельства Евдема с тем, что вытекает из фрагментов самого Гиппократа. При этом следует помнить, что Евдем называет еще двух геометров, работавших в первой половине V в.: Анаксагора и Энопида Хиосского (fr. 133). К сожалению, о математике Анаксагора мы совсем ничего не знаем, с Энопидом же традиция связывает два сравнительно элементарных предложения (Eucl. 1,12, 23), которые, однако, весьма важны для астрономии.[622]
Из сообщений, прямо или опосредованно восходящих к Евдему, известно, что пифагорейцам принадлежали следующие геометрические открытия:
1) теорема о равенстве углов треугольника двум прямым (fr. 136), содержащаяся у Евклида (1,32);
2) теория приложения площадей, рассматриваемая в I и II книгах Евклида (fr. 137);
3) теорема о том, что плоскость вокруг точки могут заполнить только следующие правильные многоугольники: шесть треугольников, четыре квадрата и три шестиугольника (Procl. In Eucl., p. 304);
4) IV книга Евклида, рассматривающая отношения правильных многоугольников и круга (Schol. in Eucl. IV,2);
5) построение трех правильных многогранников — куба, пирамиды и додекаэдра (Schol. in Eucl. XIII,1).
Теоремы, уже известные Гиппократу, подтверждают сообщения Евдема и одновременно расширяют наши представления об уровне пифагорейской математики. Гиппократ хорошо знал значительную часть теорем I книги Евклида, в частности предложения 1-12, 22-23, 29, 32, 47-48.[623] Ему была известна также обобщенная теорема Пифагора для остроугольных и тупоугольных треугольников (II, 12-13) и теорема о правильном шестиугольнике, вписанном в круг (IV,15). Вместе с тем правильный пятиугольник, вписанный в круг, был известен уже Гиппасу. Мы еще раз убеждаемся в том, что вся
IV книга Евклида была известна пифагорейцам, за исключением, может быть, последнего предложения о правильном пятнадцати-угольнике (IV,16).[624]
Поскольку IV книга опирается на положения III книги, часть из которых была известна уже Фалесу, а некоторые другие использовал Гиппократ при квадрировании луночек, следует заключить, что к пифагорейцам восходит и большая часть III книги.[625] Правда, позже к этой книге был добавлен ряд других теорем, а старые были частично переработаны Евклидом либо кем-то незадолго до него. Незначительной переработке подверглось и несколько теорем IV книги, но в целом обе эти книги, бесспорно, восходят к пифагорейцам.[626]
Все 14 теорем II книги Евклида посвящены приложению площадей, которое, как мы помним, Евдем приписывал «пифагорейской Музе».[627] В этой теории квадрирование прямоугольной фигуры решается нахождением среднего пропорционального χ между двумя отрезками а и b, — квадрат со стороной а: и будет равен прямоугольнику ab. Гиппократ не только отлично знал этот метод, но и развил его, сведя задачу об удвоении куба к нахождению двух средних пропорциональных между двумя заданными отрезками. Здесь важно отметить, что Гиппократу не просто были известны предложения, которые мы возводим к пифагорейцам, — в конце концов, он мог доказать их и сам. Но дело в том, что Гиппократ ставил перед собой уже гораздо более сложные задачи и опирался на достижения пифагорейцев в решении своих собственных проблем, таких как квадратура луночек или удвоение куба.
Итак, можно заключить, что в области планиметрии к середине V в. пифагорейцам было известно содержание II и IV книг, большинство положений III книги и значительная часть I книги. I книга стоит здесь несколько особняком: это связано с тем, что во второй половине IV в. она была сильно переработана и к ней были добавлены многие новые предложения, касающиеся параллелограммов.[628] Помимо этого, создание Евдоксом новой теории пропорций, изложенной в V книге Евклида, вызвало необходимость редакции всех тех положений первых четырех книг, которые опирались на старую теорию пропорций,135 например теоремы Пифагора.
В области стереометрии к пифагорейцам можно отнести построение трех правильных многогранников (XIII книга Евклида) — куба, пирамиды и додекаэдра. Не исключена, правда, и вероятность того, что они больше занимались математическими соотношениями, присущими этим многогранникам, чем их точным математическим построением.[629] Сомнения высказывались в особенности по поводу додекаэдра, ибо построение октаэдра, представляющего собой соединение двух пирамид с квадратным основанием, гораздо проще; тем не менее октаэдр приписывают Теэтету, а додекаэдр — Гиппасу.[630] Разделение теории правильных многогранников на два этапа (исследование отдельных многогранников и их общая теория) помогает уяснить, почему более сложный многогранник был построен раньше, чем более простой и тривиальный.[631] Гиппас занимался не теорией правильных многогранников как таковой, а именно додекаэдром. Теэтет же, поставив вопрос о том, какие правильные многогранники вообще могут существовать, легко открыл октаэдр.
Еще Хит полагал, что основа всех трех арифметических книг Евклида (VII-IX) восходит к пифагорейцам,[632] имея в виду, разумеется, и Феодора, и Архита. Однако раннепифагорейская арифметика отражена в собрании Евклида лишь в очень небольшом объеме, остальной материал дошел до нас через посредство неопифагорейцев. Тем не менее подавляющее большинство историков греческой математики от Таннери и Хита до ван дер Вардена и Кнорра относит значительную часть этого материала к концу VI-середине V в. Буркерт противопоставил этому консенсусу совершенно иной взгляд: до Архита пифагорейская арифметика состояла из заимствованных у вавилонян формул, числовой мистики и туманных спекуляций о четном и нечетном.[633] Несмотря на высокий филологический уровень его анализа, показавшего немало слабых мест в прежних реконструкциях, позиция Буркерта не получила серьезной поддержки среди историков математики, ибо против нее говорит слишком много фактов.
Если в геометрии пифагорейцы отнюдь не были монополистами, то в арифметике все известные нам математики вплоть до Фимарида, жившего уже в середине IV в.,[634] либо прямо связаны с пифагорейской школой, либо были учениками пифагорейцев, как Теэтет и Евдокс. Едва ли случайно сам Архит считал, что арифметика (или теория чисел — λογιστική) превосходит геометрию, поскольку дает доказательства там, где геометрия бессильна (47 В 4).[635] Очевидно, что это суждение относится к предшествующей ему математике, причем математике по преимуществу пифагорейской, в которой арифметическая компонента присутствует с самого начала.[636] Высокий уровень арифметических доказательств самого Архита подразумевает наличие уже сложившейся и дедуктивно развитой дисциплины. Недаром многие склонны полагать, что до Архита существовал арифметический компендий, аналогичный «Началам» Гиппократа в геометрии.[637]
Не вдаваясь в детали уже существующих реконструкций пифагорейской арифметики,[638] отметим их наиболее существенные результаты. Как показал Беккер, часть IX книги, т. е. предложения 21-34 и те определения VII книги, на которые они опираются, восходят к самому раннему этапу пифагорейской арифметики.[639] Это учение о четных и нечетных числах вполне может принадлежать Пифагору, равно как и метод построения фигурных чисел.[640] Ван дер Варден относит VIII книгу к Архиту или его школе, VII книгу — к пифагорейцам до Архита.[641] В качестве возможного автора VII книги следует назвать Феодора. Так же, как его ровесник Гиппократ свел воедино в своих «Началах» те вещи, которые он считал необходимыми для дальнейшего развития геометрии, Феодор мог обработать и систематизировать известный ему арифметический материал.