Складывая их, мы получаем: АВ2+АС2 = BC(BD + DC), или АВ2+ AC2 = DC2.
Следующий раздел пифагоровой арифметики — это учение о четном и нечетном, ставшее первым образцом теории чисел. Как считал Беккер, а вслед за ним большинство историков греческой математики,87 оно сохранилось у Евклида почти в неизменном виде (IX,21-34). Приведем для примера первые пять положений этого учения (в сокращенной форме):
21. Сумма четных чисел будет четной;
22. Сумма четного количества нечетных чисел будет четной;
23. Сумма нечетного количества нечетных чисел будет нечетной;
24. Четное число минус четное число есть четное;
25. Четное число минус нечетное число есть нечетное. Доказательства этих предложений опираются на определения
VII книги и строго логически следуют друг за другом. Хотя Евклид иногда представлял числа в виде отрезков (впрочем, это было скорее исключением, чем правилом), а пифагорейцы пользовались счетными камешками (ψήφοι), суть дела от этого не меняется. Беккер, а еще более подробно Кнорр демонстрируют, что сохраненные Евклидом доказательства (а не только сами предложения) легко иллюстрируются при помощи псефов.[582]
Абсолютно неправдоподобно, чтобы Пифагор выдвигал данные предложения без доказательств, которые были добавлены кем-то позднее: сами предложения в большинстве своем очевидны любому, кто знаком с элементарными вычислениями. Аристоксен или Аристотель, говоря о пифагоровой арифметике, едва ли ставили бы ему в заслугу «открытие» или «иллюстрацию» того факта, что сумма четных чисел всегда будет четной, если бы это и сходные с ним предложения не были доказаны. Точно так же, как Фалес в геометрии, Пифагор начал в арифметике с доказательства простейших фактов, которые раньше не считали нужным доказывать. Насколько быстро он продвинулся в разработке дедуктивного метода, показывает следующий факт: четыре предложения этого учения (IX,30-31, 33-34) доказываются от противного. Первым на это обратил внимание Сабо, но он отказался признать, что эти доказательства столь же древние, как и предложения.[583] Единственный, в сущности, аргумент, который он приводит, — отсутствие исторических свидетельств — критики не выдерживает. Источников по раннегреческой математике так мало, что ожидать свидетельств для каждого доказательства было бы совершенно утопичным.
Обратившись к математической стороне проблемы, следует признать справедливость выводов Беккера, полагавшего, что все учение о четном и нечетном следует рассматривать еп bloc. (Отмеченные им незначительные изменения не касались предложений 30-31, 33-34.) Предложения, доказываемые от противного, совершенно естественно следуют из доказываемых прямым образом, не отличаясь от них по сложности. Так, например, для доказательства предложений 33-34 не требуется ничего, кроме определений 8-9 седьмой книги. Было бы крайне странно полагать, что первоначальное прямое доказательство было впоследствии заменено косвенным: греческая математика систематически избегала подобных операций. Словом, все говорит за то, что это учение дошло до нас в первоначальном виде.
Отсюда следуют два важных вывода: 1) наглядность математических фактов и их дедуктивное доказательство вовсе не находятся в непримиримом противоречии, как это стремился представить Сабо; 2) доказательство от противного родилось внутри математики, причем на самом раннем ее этапе,[584] и лишь затем элеаты попытались применить его в философии.
Другой пример очень раннего применения косвенного доказательства — теорема о равенстве сторон треугольника, стягивающих равные углы (Eucl. 1,6), обратная доказанной Фалесом теореме о равенстве углов в равнобедренном треугольнике. Она относится к реконструированному ван дер Варденом раннепифагорейскому математическому компендию и была, вероятно, доказана либо в поколении Пифагора, либо в следующем за ним.[585]
Вторым связующим звеном между геометрией и арифметикой была теория фигурных чисел (треугольных, квадратных, прямоугольных и т.д.). Хотя до нас не дошло прямых свидетельств, относящих ее к Пифагору, в пользу его авторства говорит целый ряд аргументов.
Построение фигурных чисел с помощью гномона (угольника) представляет собой суммирование простых арифметических рядов, например, четных или нечетных чисел.
1 + 3 + 5 + ... + (2n - 1) = n2 квадратное число
2 + 4 + 6 + ... + 2n = n(n + 1) прямоугольное число
По своему характеру фигурные числа явно принадлежат к той же раннепифагорейской «псефической» арифметике, что и теория четных и нечетных чисел. Аристотель писал о тех, кто «приводит числа к форме треугольника и квадрата» (Met 1092 а 13), имея в виду, скорее всего, ранних пифагорейцев. Спевсипп в своем трактате «О пифагорейских числах» прямо называет некоторые из них «многоугольными» (fr. 28). В то же время очевидно, что теория фигурных чисел предшествует возникшим в первой половине V в. задачам на приложение площадей, которые также решаются с помощью гномона. Наконец, принято считать, что метод определения пифагоровых троек, который приписывают Пифагору Герои и Прокл, был найден им как раз с помощью построения квадратных чисел. Таким образом, у нас есть достаточно оснований, чтобы присоединиться к тем, кто считает Пифагора автором этой теории.[586]
Основные ее положения не попали в собрание Евклида. Они даются в популярной форме в трудах поздних авторов: Никомаха (Intr. arith. I, 7-11, 13-16, 17) и Теона Смирнского (Ехр., р. 26-42), а также в комментариях Ямвлиха к Никомаху. Никомах не приводит в своей книге доказательств, однако они, по всей видимости, содержались в том материале, который он использовал и к которому практически ничего не добавил. Это следует хотя бы из предложений, совпадающих с Евклидом: у последнего доказательства есть, а у Никомаха они опущены, потому что он писал для публики, которая ими не интересовалась. Если Пифагор строго доказывал все элементарные положения о четных и нечетных числах, то и теорию фигурных чисел он должен был строить на дедуктивной основе. Весьма правдоподобную реконструкцию этой теории приводит Кнорр, хотя сам он и сомневается, чтобы пифагорейцы строили ее столь же строго аксиоматически, как и он сам.[587] Вот, например, как могла доказываться одна из ее теорем, упоминаемая у Ямвлиха (In Nicom., p. 86.15 f).
Требуется доказать, что любое прямоугольное число — это удвоенное треугольное число. По определению, прямоугольное число — это сумма ряда четных чисел начиная с двух, а треугольное число — это сумма ряда натуральных чисел начиная с единицы. Поскольку последовательный ряд четных чисел представляет собой удвоение ряда натуральных чисел, очевидно, что прямоугольное число является удвоенным треугольным числом.
Доказательство легко иллюстрируется при помощи псефов:
От исследования треугольных и квадратных чисел можно перейти к стереометрической задаче и попытаться построить тело, ограниченное равносторонними треугольниками и квадратами, — в этом случае мы получим пирамиду и куб. При исследовании свойств квадратных чисел был, вероятнее всего, найден и метод определения пифагоровых троек (начиная с нечетного числа).[588] Реконструкция его выглядит следующим образом.
Прибавляя к квадрату гномон, мы получаем следующий квадрат, следовательно, нужно найти такой гномон, который сам бы был квадратным числом.