Литмир - Электронная Библиотека
Содержание  
A
A
Под знаком кванта - image107.png

Учитывая, что заряд протона е = 4,8-10 10 ед. СГСЭ, а среднее расстояние между протонами в ядре гелия 240

а«2-10 13 см, найдем

г (4,8.10-’° ед. СГСЭ)2_, t 1Л_6

эрг = 0,7

МэВ.

~FTo^'cm ’

Это очень много, но все же меньше, чем энергия ядерного притяжения. Теперь хорошо известно, что ядро любого атома построено из нуклонов, то есть из протонов и нейтронов, массы которых немного различаются между собой:

Шр= 1,007276 а.е.м., нгп = 1,008665 а.е.м.

При объединении двух протонов с двумя нейтронами возникает ядро гелия (а-частица) с массой та=4,001506 а. е.м., то есть дефект массы ядра гелия

Am = 2mp + 2mn — та=0,030377 а.е.м.,

а его энергия связи

Е = Ат-с2 = 0,030377* 931,5 МэВ = 28,3 МэВ

в 40 раз больше, чем энергия электрического отталкивания протонов в ядре.

Можно ввести, наконец, некоторую среднюю характеристику прочности ядра, которую называют энергией связи нуклона в ядре Ei и которая равна полной энергии связи, деленной на число нуклонов в ядре. Например, для гелия Ei=28,3 МэВ/4 = 7,1 МэВ. Для более тяжелых ядер энергия связи нуклона вначале возрастает (то есть ядра становятся прочнее), достигает максимума Ei=8,5 МэВ примерно в середине таблицы Менделеева для элементов, расположенных вблизи олова, и затем вновь монотонно уменьшается до значения Ei==7fi МэВ для ядра урана. (Для сравнения напомним, что энергия химической связи между двумя атомами водорода в молекуле равна 4,5 эВ, то есть более чем в миллион раз меньше, а для испарения молекулы воды, то есть для преодоления притяжения между молекулами, достаточно затратить всего около 0,1 эВ.)

При чтении этой главы могло сложиться впечатление, что ядерная физика — очень простая наука. В самом деле, для выяснения источников энергии радиоактивного распада и понимания причины стабильности большинства ядер достаточно знать формулу Эйнштейна Е = тс2, значения масс изотопов и четыре правила арифметики. Однако эти простые вычисления не помогают ответить на вопрос: почему распадаются ядра радиоактивных элементов? Ведь для того чтобы вырвать из ядра урана хотя бы один нуклон, надо затратить энергию АЕ|=7,6 МэВ, а а-частица состоит из четырех нуклонов! Так что же заставляет а-частицы покидать ядра урана, радия и других радиоэлементов, и притом с энергией в несколько мегаэлектронвольт?

Ответ на этот вопрос будет получен только в 1928 г.— через 3 года после создания квантовой механики и через 32 года после открытия радиоактивности.

Под знаком кванта - image108.png

ВОКРУГ КВАНТА

Уран

В 1789 г., в год Великой французской революции, немецкий химик и натурфилософ Мартин Генрих Клапрот (1743—1817) впервые выделил окись урана UO2. Лишь полстолетия спустя, в 1841 г., французский ученый Эжен Пе-лиго (1811 —1890) выделил уран в чистом виде. Оказалось, что это — тяжелый металл серо-стального цвета с плотностью 19,04 г/см3 и точкой плавления 1132 °C. По виду он похож на серебро, по тяжести — на платину, по химическим свойствам — на вольфрам. Вначале ему приписывали атомную массу 120, но в 1874 г. Д. И. Менделеев исправил ее на 240. Сейчас хорошо известно, что природный уран состоит из смеси двух изотопов: на 99,28 % из урана-238 и на 0,72 % — из урана-235.

Урана в земле довольно много: в среднем в каждом грамме земной породы содержится 3«10“6 г урана, то есть больше, чем свинца, серебра и ртути. В граните его еще больше: 25 г на каждую тонну гранита. Известно около 200 соединений и минералов урана, среди которых особое место занимает UF6 — бесцветные кристаллы, которые уже при 56,5 °C превращаются в ядовитый газ. Это — единственное известное газообразное соединение урана, и не будь его, разделить изотопы урана было бы намного сложнее.

Периоды полураспада ядер урана чрезвычайно велики: 7,1 «103 лет для 292U и 4,5* 109 лет для 292U. Кроме этих двух изотопов известны еще 12 изотопов урана, самый короткоживущий из которых 29гП имеет период полураспада 1,3 мин.

Земля и радий

Было давно известно, что при спуске в шахту температура Земли повышается примерно на 3° на каждые 100 м. Этот факт объясняли вполне естественно: когда-то Земля была раскаленным шаром, с тех пор постепенно остывает и поэтому внутри она горячее, чем снаружи. Однако, когда Уильям Кельвин в середине прошлого века вычислил время остывания, оно оказалось необычайно малым: меньше 100 млн. лет.

Этот результат немало обескуражил Чарлза Дарвина, поскольку для эволюции видов нужны громадные промежутки времени, и притом уже на остывшей Земле. (Он даже сделал соответствующие оговорки во втором издании своего знаменитого труда «Происхождение видов».) Геологи также решительно воспротивились: для объяснения наблюдаемых фактов им необходимо было по крайней мере в десять раз большее время существования остывшей Земли. Спор этот между физиками — с одной стороны, и биологами и геологами — с другой, длился довольно долго и прекратился по молчаливому обоюдному согласию ввиду его очевидной бесплодности.

Открытие радиоактивности позволило возвратиться к этой проблеме на новой основе. Было сразу же замечено, что если в каждом грамме вещества земного шара содержится хотя бы 10“13 г радия, то этого количества вполне достаточно, чтобы поддерживать внутреннюю температуру Земли на постоянном уровне за счет тепла радиоактивного распада. Как показали дальнейшие анализы, в каждом грамме земных недр содержится 10~6 г урана и, следовательно, 3« 10“13 г радия, то есть даже больше, чем это необходимо. В связи с этим геологи склонны сейчас считать, что Земля вовсе не остывает, а, наоборот, разогревается изнутри благодаря энергии распада радиоактивных веществ. (Одним из первых в 1910 г. к этой мысли пришел русский ученый Алексей Петрович Соколов (1854—1928).) Общий поток теплоты от распада радиоактивных элементов на поверхности Земли равен 3*1013 Вт, то есть примерно в три раза превышает мощность всей энергетики мира.

Что же касается действительного возраста Земли, то его можно сразу оценить, определив относительную концентрацию свинца в урановой руде. В самых древних урановых рудах примерно пятая часть урана распалась до свинца, то есть возраст этих пород никак не меньше 1 млрд. лет.

Рыцари пятого знака

«Часы, весы и масштаб — символы прогресса»,— писал Джемс Клерк Максвелл более ста лет назад. На протяжении всей книги мы неоднократно отмечали значение точных измерений в физике и ту роль, которую они играют в установлении новых законов природы. Такая работа выглядит буднично и не поражает, как правило, воображение юношества, но это — хлеб физики, без которого точные науки немыслимы^ «В наше время,— любил повторять Майкельсон,— новые законы природы можно открыть только в пятом знаке после запятой». Сам он был подлинным энтузиастом точных измерений: достаточно вспомнить измерение диаметра звезды Бетельгейзе, создание оптического эталона метра и знаменитый опыт Майкельсона — Морли, доказавший отсутствие эфирного ветра (Нобелевская премия 1907 г.).

Открытие благородных газов началось с отличия двух чисел всего в третьем знаке после запятой: в 1892 г. Джон Уильям Рэлей (1842—1919) обнаружил, что вес 1 л азота, выделенного из воздуха, равен 1,2521 г, а литр азота, выделенного из химического соединения, весит 1,2505 г. Впоследствии совместно с Уильямом Рамзаем (1852—1916) они объяснили это различие и выделили из воздуха почти все благородные газы, открыв тем самым 8-ю группу элементов таблицы Менделеева (Нобелевская премия 1904 г.).

62
{"b":"862185","o":1}