Литмир - Электронная Библиотека
Содержание  
A
A

Луи де Бройля занимал все тот же вопрос: «Почему атомы устойчивы? И почему на стационарных орбитах электрон не излучает?» Первый постулат Бора выделял эти орбиты из набора всех мыслимых орбит квантовым условием, которое связывает радиус орбиты г, скорость о и массу т электрона с целым числом п квантов действия Й = /г/2л:

mvr = nh.

Де Бройль хотел найти разумные основания для этого условия, то есть стремился объяснить его с помощью других, более привычных понятий, или, другими словами, пытался понять его физический смысл.

Когда ищут объяснение непонятным фактам, как правило, прибегают к аналогиям. Точно так же поступил и де Бройль. В поисках выхода из тупика противоречивых представлений об атоме он догадался, что трудности эти сродни тем, которые возникли при попытках понять противоречивые свойства света. Со светом дело запуталось окончательно в 1923 г., когда Артур Комптон поставил свой знаменитый опыт и доказал, что рассеяние рентгеновских лучей на электронах нисколько не похоже на рассеяние морских волн, зато в точности напоминает столкновение двух бильярдных шаров, один из которых — электрон с массой /и, а другой — световой квант с энергией E — hv. После опыта Комптона и объяснения, данного им самим и Петером Йозефом Вильгельмом Дебаем (1884—1966), уже нельзя было сомневаться в том, что в природе реально существуют световые кванты — фотоны с энергией E = hvy импульсом p — hy/c и длиной волны X = c/v, которой эти кванты соответствуют.

Под знаком кванта - image59.png
Луи де Бройль

дуализма в природе, но в то время де Бройлю пришлось

Ни де Бройль, ни его современники не могли объяснить, что означают слова: «световые кванты соответствуют световой волне». Однако у них не было оснований подвергать сомнению эксперименты, из которых следовало, что в одних условиях световой луч ведет себя как волна с длиной X и частотой v, а в других — как поток частиц — фотонов с энергией E = hv и импульсом p^h/'k (раньше их называли корпускулами). Года через три-четыре все поймут, что это явление — лишь частный случай всеобщего корпускулярно-волнового находить верную дорогу ощупью.

ВОЛНЫ МАТЕРИИ

Де Бройль верил в единство природы, верил искренне и глубоко — как все великие ученые до него. Поэтому он не мог допустить, что луч света — нечто особенное и ни на что другое в природе не похожее. Де Бройль предположил: не только луч света, но и все тела в природе должны обладать и волновыми, и корпускулярными свойствами одновременно. Поэтому, кроме световых волн и частиц материи, в природе должны реально существовать и корпускулы света, и волны материи.

Такое простое и сильное утверждение нелегко высказать — для этого нужны смелость и вера. Еще труднее его понять — на это способен лишь непредвзятый ум, привычный к абстрактному мышлению. И вряд ли можно это наглядно представить — природа, доступная восприятию наших пяти чувств, не создала зримых образов, которые помогли бы в этих усилиях. В самом деле, при слове «частица» вам может прийти на память все, что угодно — песчинка, бильярдный шар, летящий камень, но вы никогда не вспомните морские волны или колеблющуюся струну. Для нормального человека это настолько несовместимые образы, что объединить их в один кажется противоестественным.

Всякий рассказ о рождении новой физической теории эаведомо неточен даже в устах ее автора: такой рассказ, как правило, использует готовые понятия, которых в момент создания теории не было. У ныне живущих физиков понятие «волна материи» вызывает в сознании некий сложный образ, который ни с чем привычным в окружающем нас мире сравнить нельзя. Образ этот складывается постепенно, при работе с формулами квантовой механики, при решении квантовых задач, и рассказать о нем словами довольно трудно. Понятно, что такого сложного и совершенного образа в 1923 г. у де Бройля не было. Чтобы пояснить его тогдашние рассуждения, мы также используем подходящий заменитель, а именно образ волны, которая возникает при колебаниях струны.

Хорошо известно, что при ударе по натянутой струне она начинает звучать и звук этот зависит от натяжения и от длины струны. Механизм появления звука также хорошо известен: колебания струны передаются воздуху, и мы воспринимаем уже его колебания, а не струны. Однако между ними существует однозначная связь. Например, если мы слышим ноту «ля» первой октавы, то в этот момент струна колеблется с частотой v = 440 Гц, то есть 440 колебаний в секунду. А поскольку скорость звука в воздухе равна у —344 м/с, то длина этих звуковых волн равна X = z?/v = = 0,78 м.

При колебаниях струны мы слышим основной тон — такое колебание, когда вся струна колеблется как целое. Однако при ее возбуждении возникают и дополнительные колебания — обертоны. Картина колебаний усложняется, на струне появляются «узлы», то есть такие точки, которые остаются неподвижными в процессе колеб соблюдается одно условие: на длине струны умещается целое число полуволн Х/2. Для основного тона на длине струны укладывается ровно половина волны Х/2. Для первого обертона — две половины волны, между которыми расположен неподвижный «узел», и т. д.

Дальнейшее — сравнительно просто. Свернем наши струны в кольцо и представим себе, что это орбиты электрона в атоме. Теперь заменим движение электрона по ним колебаниями волн, которые «соответствуют электрону»,— де Бройль был убежден, что это разумно,— и предположим, что

. Но всегда строго
Под знаком кванта - image60.png

движение электрона будет устойчивым тогда — и /только тогда! — когда на длине орбиты укладывается целое число п «волн электрона» X. Отсюда следует простое условие:

2лг = пХ.

Теперь достаточно сравнить это условие с первым постулатом Бора

2nmvr — nh

и найти отсюда «длину волны электрона»:

х=-^.

ти

Вот и все. Это действительно просто. Но это так же просто, как формула Планка E — hv, как постулаты Бора, как закон всемирного тяготения Ньютона, — это гениально просто. Такие открытия просты, ибо требуют самых простых понятий. Но они меняют самые основы нашего мышления. В истории развития человеческого духа их считанное число. И никогда нельзя до конца понять, как они были совершены. Это — всегда чудо, объяснить которое не под силу даже самим создателям. Они могут лишь вслед за Ньютоном повторить: «Я все время об этом думал».

Де Бройлю было 30 лет, когда он нашел свою формулу. Но искать ее он начал за двенадцать лет до этого — с тех самых пор, как его брат Морис приехал из Брюсселя, где он был секретарем I Сольвеевского конгресса. Того самого конгресса 1911 г., на котором Планк рассказал о развитии «гипотезы квант». Значительность открытий, живые впечатления старшего брата от общения с великими физиками настолько поразили воображение младшего, что он не смог забыть их даже на войне. Постоянное напряжение мысли разрешилось, наконец, в 1923 г. гипотезой о волнах материи. Теперь де Бройль смог дать новое определение понятию «стационарная орбита»: это такая орбита, на которой укладывается целое число «волн электрона» \ —

Если это действительно так, то проблемы устойчивости атома не существует, ибо в стационарном состоянии он подобен струне, колеблющейся в вакууме без трения. Такие колебания не затухают, а потому без внешнего воздействия электрон останется в стационарном состоянии навсегда.

Самое трудное — высказать гипотезу. Это всегда процесс нелогический. Но как только она высказана, законы логики позволяют извлечь из нее все следствия. Главное из них очевидно: если «волны материи» существуют, то их можно обнаружить и измерить. Через четыре года их действительно нашли и доказали их реальность с той степенью строгости, какая принята в физике.

31
{"b":"862185","o":1}