А это мы с доктором Харманом на конгрессе геронтологов в 1984 г.
В радиобиологии к 1954 г. было установлено, что повреждения в клетках от действия радиации происходят в результате расщепления воды на свободные радикалы ОН и НО2. Кислород в этих продуктах разложения воды имеет свободную валентность и мгновенно реагирует с любой ближайшей молекулой, приводя к ее окислению. Харман обнаружил, что свободные радикалы кислорода в небольших количествах могут образовываться в тканях независимо от облучения. При стимуляции метаболизма увеличивалось и образование свободных радикалов. Реакции свободных радикалов хаотичны и неразборчивы. Они могут повреждать важные биомолекулы – белки, ДНК, РНК, липиды клеточных оболочек. Поскольку появление радиационных технологий, включая военные, приводило к неизбежному контакту людей с радиацией, то для уменьшения степени радиационных повреждений тканей стали применяться так называемые радиационные протекторы – вещества, способные очень быстро реагировать со свободными радикалами кислорода, защищая таким образом более важные биомолекулы. Эти вещества рекомендовалось принимать работникам атомной промышленности, например шахтерам на урановых рудниках, персоналу на атомных реакторах или на заводах по производству радиоактивных изотопов, для защиты их здоровья от действия радиации. Радиопротекторы могли служить защитой от облучения в случае применения атомного оружия или на полигонах, где испытывалось такое оружие. Их защитное действие проверялось на животных. После летальных доз облучения контрольные мыши или крысы умирали, тогда как особи, получавшие с пищей или инъекциями радиопротекторы, оставались живы. К 1956 г. были известны уже десятки природных и синтетических органических веществ, обладавших свойствами радиопротекторов.
В своей первой опубликованной по этой проблеме работе Харман рассказал об изучении смертности мышей, получавших радиопротекторы в обычных условиях, без облучения. По замыслу опыта эти вещества должны были связывать, «гасить» свободные радикалы, которые образуются при окислительных реакциях, защищая ткани от повреждения, и в результате этого увеличивать продолжительность жизни. В первом опыте Харман испытывал пять радиопротекторов-антиоксидантов в течение 15 месяцев, добавляя их в диету животных. Три соединения, цистеин, меркаптоэтиламин и диаминдиетил, снижали смертность мышей на 10 – 20%. Два других, включавших аскорбиновую кислоту, не оказывали никакого действия [4]. Однако опыт ни разу не показал различия в максимальной продолжительности жизни контрольных и опытных популяций мышей.
Вверху – электронная фотография митохондрии. Внизу – модель митохондрии. Митохондрион – клеточные органеллы размером от 0,5 до 1 мк, в которых происходят разнообразные окислительные реакции и генерация тепловой и химической энергии, необходимой для всех функций организма. В многочисленных ячейках митохондрии находятся сотни разнообразных ферментов. Митохондрии имеют собственную ДНК и способны к делениям и митохондриальным мутациям. Митохондрион – это автономная генетическая система, переходящая из поколения в поколение, подобно хромосомам клеточного ядра. Свободные кислородные радикалы, образующиеся в митохондриях, играют важную роль не только в функциях лимфоцитов и макрофагов, но и в процессах детоксификации вредных веществ, повреждающее действие свободных радикалов – это побочный эффект их полезных функций [28].
В 1960 г. Харман перешел на работу в Университет штата Небраска, создав там специальную лабораторию для более широких опытов по возможному продлению жизни лабораторных животных антиоксидантами, в основном синтетическими, применявшимися в радиобиологии и в пищевой промышленности. Десятки таких веществ добавляют в разные пищевые продукты, чтобы защитить их от окисления. Кроме меркаптоэтиленамина, эффективность которого была установлена раньше, был идентифицирован гидрокситолуен, также снижавший смертность мышей на 20%. Однако и в этом случае средняя продолжительность жизни увеличивалась за счет снижения заболеваемости мышей различными формами рака. В связи с этим Харман расширил свою теорию, предположив, что свободные радикалы являются причиной не только старения, но и соматических мутаций, приводящих к канцерогенезу [5]. Через несколько лет он добавил к свободнорадикальным болезням атеросклероз и гипертонию, а еще позже и болезнь Альцгеймера. Харман прогнозировал, что использование некоторых, пока еще не идентифицированных антиоксидантов могло бы увеличивать среднюю продолжительность жизни людей на 5 – 10 лет. Однако клинических проверок на людях в его лаборатории не проводилось. Поскольку антиоксиданты, снижая смертность, не влияли на максимальную для вида продолжительность жизни, Харман предположил, что они не способны проникать в митохондрии – внутриклеточные органеллы, в которых происходят окислительные процессы, выделяющие свободные радикалы в качестве побочных продуктов. Таким образом, он определил митохондрии как источник тех процессов, которые ведут к старению [6].
Антиоксиданты в природе
Кислород в атмосфере или в воде находится в инертной молекулярной форме О2, так как при фотосинтезе в растениях два атома свободного очень реактивного кислорода немедленно соединяются в одну более инертную молекулу. Чтобы атомы кислорода, высвобождаемого благодаря хлорофиллу из СО2 за счет энергии солнечного света, не могли выходить за пределы хлоропластов, хлорофилл всегда находится в комплексе с пигментом-антиоксидантом каротином и с другими пигментами из группы каротиноидов. Молекулярный кислород используется в энергетическом обмене животных и растений только через цепочку очень точно организованных ферментативных реакций и благодаря ферментам, в молекулах которых присутствуют ионы металлов, способных к быстрым окислительно-восстановительным реакциям. Углерод и водород, содержащиеся в пищевых продуктах, окисляются до СО2 и Н2О, и генерируемая при этом энергия обеспечивает все синтезы в клетках и тепловой режим нашего тела. На первом этапе этого сложного процесса происходит связывание кислородных молекул воздуха при дыхании гемоглобином крови. В эритроцитах главный белок является комплексом глобина и гема, пигмента, содержащего атом железа в активной восстановленной форме Fe2+. Гем связывает кислород слабой водородной связью, чтобы легко отделить его в тканях, заменив на СО2. Разные варианты гемоглобинов существуют у всех животных, от простейших до человека. В тканях кислород гемоглобина связывается множеством окислительных ферментов, которые способны расщеплять О2 на два О и использовать его в разных реакциях синтеза и распада до конечных воды и углекислого газа. Однако такие реакции не проходят с абсолютной точностью. Могут случаться ошибки, в результате которых атомарный кислород и недостроенные молекулы, например ОН, называемые свободными радикалами, не связаны с активными группами ферментов. Эти супероксидные радикалы, имея свободный электрон, быстро реагируют с любыми соседними молекулами, белками, РНК, ДНК или жирными кислотами, меняя их структуру и свойства. При взаимодействии атомарного кислорода с водой образуется перекись водорода Н2О2, которая также имеет свойства свободного радикала. Свободные радикалы кислорода могут быть ошибками окислительных реакций в большинстве клеток. Однако в некоторых клетках, например в лейкоцитах, макрофагах и других, объединяемых в группу фагоцитов, свободные радикалы генерируются для уничтожения проникших в организм бактерий и вирусов и для быстрого окисления и разрушения любых чужеродных частиц. Таким образом, свободные радикалы выполняют полезную функцию в иммунных реакциях. Подсчитано, что от 1 до 3% вдыхаемого человеком кислорода превращается в процессах метаболизма в свободные кислородные радикалы. Избыток фагоцитарных клеток, которые скапливаются в местах воспалительных процессов, может сопровождаться перепроизводством перекиси водорода, вызывая повреждение тканей. Некоторые формы артрита суставов возникают именно таким образом. Попытки полностью насытить ткани антиоксидантами могут ослаблять иммунные реакции, но облегчать остроту артрита или полиартрита.