В «Principia Philosophiae» Декарт уточняет идею божественной неизменности: поскольку Бог сохраняет частицы материи «тем же действием и по тем же законам, по которым он их создал, то с необходимостью следует, что он ныне сохраняет во всех них движение, которое тогда же вложил в них, наделив его свойством не оставаться всегда связанным с одними и теми же частицами материи, но переходить от одних к другим в зависимости от их различных столкновений. Таким образом, это вечное изменение сотворенного мира никоим образом не противоречит присущей Богу неизменности, а скорее служит ее доказательством»1597. Таким образом, чтобы движение (и соответственно покой) сохранялись, движущееся (покоящееся) тело должно получать (терять) в каждое мгновение некое количество движения.
Однако есть один вид движения, для понимания природы которого «достаточно рассмотреть [только] один момент»1598, – это «движение по прямой» (точнее, прямолинейное и равномерное движение), которое «совершенно просто»1599. Для того, чтобы представить его (то есть прямолинейное и равномерное движение. – И.Д.), достаточно помыслить, что некоторое тело совершает действие движения в определенную сторону, что бывает в каждый из моментов, которые могут быть определены в течение того времени, когда оно движется. Напротив, для того, чтобы представить круговое или какое-нибудь другое возможное движение, необходимо рассмотреть по крайней мере два таких момента, или, лучше, две его части, и соответствующее между ними отношение1600. Но прямолинейное и равномерное движение, по мысли Декарта, не может быть актуальным, как и все, что Бог сотворил в некий момент, оно может быть только потенциальным, то есть в любой момент в телах имеется «все необходимое, чтобы… производить» такое движение1601. Однако здесь имеется важный нюанс. В приведенных цитатах обращает на себя внимание выражение «тело совершает действие движения в определенную сторону». Декарт здесь имеет в виду прямолинейное (и, возможно, равномерное) движение. По его мнению, «все необходимое, чтобы его (то есть прямолинейное и равномерное движение. – И.Д.) производить, имеется в телах в любой момент»1602. Иными словами, в каждом теле есть постоянно актуализующаяся потенциальность. Более того, в телах самих по себе существует только одна-единственная детерминация (естественная предрасположенность) движения – это предрасположенность к прямолинейному и равномерному перемещению, и источником этой детерминации является Бог1603. Всякое иное движение требует прямого воздействия на данное тело со стороны других тел. Таким образом, поскольку криволинейное движение не может быть определено его состоянием в один момент времени, а требует для своего описания определения его состояния не менее чем в двух моментах времени, то такое движение не является прямым следствием божественной каузальности. Форма криволинейного движения обусловлена двумя факторами: ежемоментным сохранением божественной детерминации к равномерному движению тела по прямой и некоторым вмешательством другого тела, которое нарушает прямолинейное и равномерное движение. Можно сказать, что такое движение состоит из двух указанных составляющих. Говоря словами Декарта, «Бог – единственный творец всех существующих в мире движений, поскольку они вообще существуют и поскольку они прямолинейны. Однако различные положения материи превращают эти движения в неправильные и криволинейные»1604. Мы наблюдаем только результирующее движение, и если действие второго из указанных выше факторов может нами наблюдаться (скажем, при движении камня в праще или при перемещении бильярдных шаров), то действие первого фактора всегда остается вне возможностей нашего восприятия, остается скрытой реальностью, существование которой не манифестируемо. Именно к этой неманифестируемой реальности, о которой Декарт говорит как о мире простоты, ясности и отчетливости, относятся фундаментальные законы мира, тогда как видимая реальность аморфна и неопределенна, а потому и непостижима (неинтеллигибельна). Когда Мерсенн в ноябре 1629 года спросил Декарта о том, как, в соответствии с каким законом сопротивление воздуха оказывает влияние на колебания маятника, последний признал, что «на этот вопрос невозможно ответить, поскольку он (вопрос) оказывается за гранью научного объяснения (sub scientia non cadit); воздух может быть теплым или холодным, сухим или влажным, ясным или облачным, да и тысячи иных обстоятельств могут изменять его сопротивление; более того, груз отвеса может быть сделан из свинца, или железа, или дерева, он может быть квадратным или иметь любую другую форму, и опять-таки тысячи иных обстоятельств могут изменять результат (proportio). И это относится вообще ко всем вопросам, касающимся сопротивления воздуха»1605. Приговор Декарта – sub scientia non cadit – относится, разумеется, не только к сопротивлению воздуха, но практически к любому «возмущающему воздействию», а следовательно, к феноменальному миру (миру, как мы его наблюдаем) в целом. Поэтому никакой опыт не может быть правильно понят, если не выявлен фундаментальный закон, лежащий в основании наблюдаемых явлений, то есть не понята стоящая за феноменологией невидимая реальность («invisible lawful components», как выразился З. Бехлер1606). Отсюда берет свое начало пренебрежительное отношение Декарта к законам, полученным из анализа наблюдений и тщательных измерений (в частности, к законам, открытым Кеплером и Галилеем)1607. Впрочем, что касается Галилея, то он открыл законы равноускоренного движения и свободного падения отнюдь не чисто эмпирическим путем1608. Эти законы были им выведены из довольно сложных (и, как правило, неверных) рассуждений, включавших анализ представлений Аристотеля и средневековых авторов, а также наблюдений самого Галилея1609. По мнению французского философа, пытаться свести сложное природное явление к некой рациональной схеме, не отбрасывая многие из его видимых проявлений, то есть не «фальсифицируя» феномен, – дело совершенно безнадежное. Любой эксперимент будет отрицать закон инерции, поскольку этот закон относится к тому, что Декарт называл «чистой ситуацией». Но эти «чистые», то есть идеализированные, как мы сейчас говорим, ситуации, не есть нечто отвлеченное: законы, справедливые для таких ситуаций, постоянно актуализируются в наблюдаемых явлениях. Галилей и Ньютон согласились бы с этими утверждениями. Однако каждый из создателей науки и философии Нового времени понимал сказанное по-своему. Для Галилея «чистая ситуация» – это ситуация движения материальной точки в пустом пространстве, для Ньютона это движение тела под действием приложенных к нему сил, у Декарта это область детерминаций (determinatio)1610 и тенденций, почему он и не видел какую-то специфику эксперимента, ведь если область determinatio – это область, принципиально недоступная нашему восприятию (Декарт называл ее «новым миром»), то законы природы можно открывать только разумом: «…Хотя все то, что мы когда-либо испытали в настоящем мире посредством наших чувств, кажется явно противоречащим тому, что заключается в этих двух правилах (то есть в законах движения. – И.Д.), все-таки основание, приведшее меня к ним, кажется мне столь убедительным, что я считаю себя обязанным предполагать их в новом мире, который я вам описываю. Ибо какое более твердое и более прочное основание можно найти для того, чтобы установить истину, хотя бы и выбранную по желанию, нежели постоянство и неизменность самого Бога?»1611
вернуться«Склонность (conatus)» тела к прямолинейному движению не может быть реализована в силу того, что в картезианском «новом мире» такое движение логически невозможно по причине отсутствия пустоты и тождества материи и протяженности, откуда и следует, что движение по прямой должно рассматривать как некую присущую телу потенциальность. вернутьсяBechler Z. Newton’s Physics… P. 224. вернутьсяДекарт признавался, что «никогда не обращался к вопросам, рассмотрение которых зависело от измерений скоростей» (письмо математику Ф. де Бону от 30 апреля 1639 года // AT, II. P. 542). Другой пример: сформулировав семь правил столкновения тел, Декарт поясняет, что «опыт, на первый взгляд, как будто противоречит изложенным правилам. Однако причина тому очевидна, ибо правила эти предполагают, что оба тела, B и C, совершенно тверды и настолько отдалены одно от другого, что вокруг них нет никакого вещества, которое могло бы способствовать или препятствовать их движению, а таких тел мы в нашем мире не усматриваем» (Декарт Р. Сочинения… Т. I. С. 377 – 378). вернутьсяНезависимо от того, бросал ли Галилей в 1597 году шары (пушечные ядра) разного веса с Пизанской башни или нет, можно с уверенностью сказать: ни этот эксперимент (если он действительно проводился, что, на мой взгляд, более чем сомнительно), ни его знаменитые опыты с качением шаров по наклонной плоскости не дали, и в принципе не могли дать, никаких результатов, которые бы способствовали установлению Галилеева закона свободного падения (s = gt2/2). Скорее они свидетельствовали бы в пользу традиционной точки зрения. Действительно, падение сферического тела в воздухе вблизи поверхности Земли описывается следующим уравнением: s = s0lg ch(t/tn), где s0 = 8ρR/3Cρ0; tn = s0(ρ – ρ0)/ρg; ρ и ρ0 – плотности тела и среды, в которой происходит падение; R – радиус тела; C – так называемый коэффициент лобового сопротивления; s – путь, пройденный телом за время t (см.: Feinberg G. Fall of Bodies Near the Earth…). Полагая C = ½ и t << t0 ≈ (s0g)½, запишем приведенную формулу в виде ряда (при t/t0 << 1): s = (½)gt2[1 – (1/6)(t/t0)2 + …]. Подставляя в приведенные выражения соответствующие значения величин (высота Пизанской башни около 100 локтей (braccia), или 56 метров), получаем, что в случае свинцовых шаров весом 100 фунтов и 1 фунт время падения составит соответственно 3,39 и 3,42 сек. Разумеется, такую разницу Галилей, измерявший время по пульсу (sic!), зафиксировать не мог. Однако более легкий шар должен «отстать» от тяжелого (в момент удара последнего о землю) на 0,82 метра (в случае же стальных шаров тех же масс отставание должно было быть еще большим – 1,02 метра). Вряд ли это можно было не заметить. Что же касается Галилеевых экспериментов с качением шаров, то они сами по себе не давали никакого результата. Уравнение движения шара по наклонной плоскости имеет вид: s = (5/14)g[sinθ – (k/R)cosθ]t2, где θ – угол наклона плоскости (желоба в опытах Галилея); R – радиус шара; k – коэффициент трения качения (трением скольжения пренебрегаем). Из этой формулы (при 0,01 < k < 0,05) после подстановки в нее соответствующих величин получаем результаты, которые с хорошей точностью совпадают с результатами Галилея, но они не соответствуют «идеальному» случаю (то есть качению шара идеальной сферической формы без трения по абсолютно гладкой поверхности). Иными словами, закон свободного падения (при θ = 900) никак не получался из экспериментов Галилея. вернутьсяДетально об этом см.: Дмитриев И.С. Увещание Галилея… Глава III. вернутьсяDeterminatio, по Декарту, – это то, что зависит от скорости или «способности движения (force de se mouvoir)» тела и что определяет направление его движения. Напомню, что в картезианской механике «сила <…>, которая обусловливает поддержание движения <…>, отлична от силы, которая определяет, что <…тело> будет двигаться в одном, а не в другом направлении» (AT, VI. P. 94). |