Для упрощения инженеры Intel сделали примерный расчёт того, что произошло бы, если бы Volkswagen Beetle 1971 года по закону Мура улучшался с той же скоростью, что и микрочипы. И вот итог: к сегодняшнему дню Beetle смог бы ехать со скоростью около 482 тысяч километров в час. Расход топлива составил бы 1,2 литра на миллион километров, а обслуживание стоило бы четыре цента! В Intel подсчитали также, что, если бы эффективность использования автомобильного топлива улучшалась со скоростью закона Мура, мы смогли бы, грубо говоря, водить всю жизнь автомобиль, не израсходовав и одного бака бензина.
Причина столь необычных сегодняшних технологических изменений таится в том, что их провоцирует не только вычислительная скорость микрочипов, находящаяся в устойчивом нелинейном ускорении, но и развитие остальных компонентов компьютера.
Сегодня каждое вычислительное устройство имеет пять основных компонентов:
(1) интегральные схемы, что производят вычисления;
(2) блоки памяти, которые хранят и извлекают информацию;
(3) сетевые системы, обеспечивающие связь внутри и между компьютерами;
(4) программные приложения, позволяющие разным компьютерам выполнять множество задач индивидуально и коллективно;
(5) датчики – камеры и иные миниатюрные устройства, способные обнаруживать движение, язык, свет, тепло, влажность и звук, преобразовывая любой из них в цифровые данные, которые могут быть переведены на «человеческий» язык, доступный для понимания.
Удивительно, но у закона Мура много «родственников» в других сферах. В этой главе будет показано, как устойчивое ускорение развития всех пяти компонентов, их объединение и эволюция в то, что мы теперь называем «облаком», привело нас на новый уровень развития – к точке, нарисованной «Астро» Теллером, где темпы технологических и научных изменений опережают скорость, с которой люди и общества обычно могут адаптироваться.
Гордон Мур
Начнём нашу историю с микрочипов, также известных как интегральные микросхемы, они же микропроцессоры. На этих устройствах работают все программы и память компьютера. Словарь подскажет нам, что микропроцессор похож на мини-вычислительный движок, построенный на одной кремниевой микросхеме, поэтому его сокращенно и называют «микрочип», или просто «микросхема». Микропроцессор состоит из транзисторов – иными словами, крошечных переключателей. Они могут включать или выключать поток электричества. Вычислительная мощность микропроцессора зависит от того, насколько быстро транзисторы включаются и выключаются и сколько их вы можете разместить на одном кремниевом чипе. До изобретения транзистора первые компьютерные дизайнеры полагались на ламповые вакуумные трубки (подобные им вы могли видеть на задней панели старого телевизора). Они включали и выключали электричество для производства вычислений, но были очень медленными и сложными для сборки.
И вдруг летом 1958 года всё изменилось. Инженер из Texas Instruments Джек Килби «нашёл решение этой проблемы» (сообщает NobelPrize.org).
Идея Килби была в том, чтобы соединить все компоненты и чип в единый блок (монолит) из полупроводникового материала. В сентябре 1958-го у него была готова первая интегральная схема.
Сделав все детали блока из одного материала и добавив металл, необходимый для их соединения в виде поверхностного слоя, он избавился от необходимости в отдельных дискретных компонентах. Больше не нужно было собирать провода и компоненты вручную. Появилась возможность производить микросхемы меньшего размера, а весь процесс изготовления автоматизировать.
Полгода спустя другой инженер, Роберт Нойс, предложил собственную идею интегральной микросхемы – она элегантно решает некоторые проблемы микросхемы Килби и позволяет беспрепятственно соединять все компоненты на одном кристалле кремния.
Так началась цифровая революция.
В 1957 году Нойс стал соучредителем Fairchild Semiconductor (а затем и Intel), созданной для разработки чипов, вместе с несколькими другими инженерами, в том числе Гордоном Э. Муром, который получил докторскую степень по физической химии в Калифорнийском технологическом институте и стал директором лаборатории по исследованиям и разработкам в Fairchild.
Главным новшеством компании стало развитие процесса химической печати миниатюрных транзисторов на кристалле кремния, что значительно облегчило их масштабирование и предложило массовому производству отличное решение. Как утверждает Фред Каплан в книге «1959: год, изменивший всё», микрочип мог бы не получить такой популярности и развития, если бы не было крупных правительственных программ, особенно полётов на Луну и ракеты «Минитмен». Оба проекта нуждались в сложных системах наведения, которые должны были поместиться в очень маленькие носовые конусы. Министерство обороны требовало резко сократить занимаемый микрочипами объём, и первым, кто согласился на эти условия, был Гордон Мур.
«Пожалуй, Мур первым понял, что подход Fairchild к химической печати для создания микрочипа означал: они не только меньше размером, надёжнее и энергоэффективнее, чем обычные электронные схемы, но и производить такие микрочипы дешевле, – писал Дэвид Брок в специальном выпуске журнала Core[11]. – В начале 1960-х вся мировая полупроводниковая индустрия приняла подход Fairchild к созданию кремниевых микросхем, и для них появился рынок в военных областях, в частности в аэрокосмической отрасли».
Я взял интервью у Гордона Мура в мае 2015 года в Исследовательском центре в Сан-Франциско, во время празднования пятидесятой годовщины закона Мура. Хотя в то время ему сравнялось 86 лет, все его микропроцессоры определённо работали с огромной эффективностью! Как объяснил мне Мур, в конце 1964-го журнал «Электроника» попросил его представить для выпуска, посвящённого 35-летию журнала, статью, где рассказывалось бы о том, что произойдет в индустрии полупроводниковых компонентов в ближайшие десять лет. Поэтому он взял свои записи и просмотрел, что уже произошло к тому времени: Fairchild перешли от одного транзистора на чипе к чипу с примерно восемью элементами (транзисторами и резисторами), в то время как новые микросхемы, которые они собирались выпускать, уже имели 16 элементов – вдвое больше. А в лаборатории экспериментировали с тридцатью двумя элементами и представляли, как доберутся до шестидесяти четырех! Просматривая свой дневник, он заметил, что мощность удваивается каждый год, поэтому в статье для журнала и выдвинул предположение: подобное удваивание продолжится ещё как минимум десять лет.
Итак, в ставшей позднее знаменитой статье для «Электроники» от 19 апреля 1965 года – «Создание большего количества компонентов на интегральных схемах» – Мур заявил: «Сложность производства при минимальных затратах на компоненты возрастала за год примерно в два раза. Нет никаких оснований полагать, что этот рост не будет почти постоянным в течение как минимум десяти лет».
Позже Карвер Мид, профессор Caltech, инженер и друг Гордона Мура, назвал это заявление «законом Мура».
Полвека спустя Мур объяснял мне:
– Я смотрел на интегральные схемы – они действительно были новшеством в то время (им было всего несколько лет), и они стоили очень дорогио. Много спорили о том, почему им никогда не стать дешёвыми. Возглавив лабораторию, я начал понимать: если мы научимся размещать всё больше компонентов на чипе, это сделает электронику дешевле. Но я понятия не имел, насколько точным окажется прогноз. Знал лишь, в каком направлении шла общая тенденция развития микрочипов, поэтому пришлось указать какую-то причину, по которой важно было снизить стоимость электроники
Первоначальный прогноз охватывал десять лет: рост с 60 элементов на интегральной схеме до 60 тысяч – экстраполяция в тысячу раз. И прогноз сбылся! Но Мур понимал, что темпы роста вряд ли будут устойчивыми, поэтому в 1975-м обновил свой прогноз и сказал, что удвоение будет происходить примерно каждые два года, а цена на новые микрочипы останется почти такой же.