Весьма существенно, что взаимную потенциальную энергию нельзя представить в виде суммы потенциальных энергий, приписываемых каждой материальной точке в отдельности. Каждая пара взаимодействующих материальных точек дает вклад в полную энергию. Следовательно, индивидуальность материальной точки выражена тем слабее, чем сильнее взаимодействие между ними. Наличие этой взаимной энергии характерно для систем взаимодействующих материальных точек и отличает их, например, от ансамбля невзаимодействующих материальных точек, находящихся в заданном внешнем поле.
Динамика систем материальных точек – основа динамики твердых тел, поскольку последние можно представить в виде системы материальных точек, расстояния между которыми остаются неизменными из-за сил взаимодействия, чрезвычайно быстро возрастающих при отклонении этих точек от своего положения равновесия. Тот факт, что взаимное расположение материальных точек в таких твердых телах остается неизменным, позволяет определить его положение в каждый момент времени заданием всего лишь шести параметров.
Такими параметрами могут служить, например, три координаты какой-либо произвольной точки тела и три угла, определяющих его ориентацию относительно некоторой системы координат.
Если мы имеем задачу о движении нескольких твердых тел, каким-либо образом связанных между собой, то число параметров, необходимых для описания такой системы, возрастает. Однако при написании уравнений движения всегда можно исходить из уравнений для системы материальных точек, предполагая при этом, что твердые тела представляют собой некоторую совокупность таких материальных точек.
Таким образом, предвосхищая развитие атомной физики, механика твердых тел строилась исходя из предположения о дискретности материи. Здесь следует сделать одно замечание. В обычных экспериментах мы имеем дело, как правило, с крупномасштабными телами, а не с материальными точками, и, в частности, большинство методов измерения пространства и времени, необходимых для изучения различных явлений, основано на использовании свойств твердых тел. Именно эти понятия пространства и времени, взятые из повседневной жизни и наблюдений над крупномасштабными телами, в частности твердыми, служат нам для определения законов движения материальных точек. Определив таким образом эти законы, мы снова возвращаемся к изучению механических свойств твердых тел, рассматривая их как совокупность материальных точек. Хотя такой путь и непротиворечив, однако предположение, что понятия пространства и времени, возникшие из наблюдений над твердыми телами, можно без изменений использовать при изучении процессов, происходящих с элементарными частицами, – весьма смелая гипотеза. Можно было бы предположить, что применение этих понятий к элементарным актам потребует их серьезной модификации. Единственное условие, которое при этом на самом деле должно соблюдаться, заключается в требовании, чтобы свойства элементарных частиц были таковы, что, переходя к системам из очень многих частиц, мы имели бы возможность получать уже известные нам свойства материальных тел (в частности, свойства твердых тел) и обычные определения пространства и времени. Правда, это замечание, важность которого недавно подчеркнул Ж.Л. Детуш, не является, по-видимому, серьезным возражением против метода, используемого в классической аналитической механике, поскольку материальную точку там можно было бы определить не как элементарную частицу, а как частицу материи, имеющую пренебрежимо малые размеры, но содержащую все же в себе чрезвычайно большое число элементарных частиц. Иное дело в атомной физике, когда, допуская существование элементарных частиц, пытаются применять к ним классические законы механики материальной точки или какие-либо Другие законы, предполагающие справедливость наших обычных понятий пространства и времени. Здесь это возражение становится серьезным.
4. Аналитическая механика и теория Якоби
Аналитическая механика, тесно связанная с именем великого Лагранжа, представляет собой совокупность методов, позволяющих быстро написать уравнения движения какой-либо системы, если известен набор параметров, знания которых достаточно для однозначного определения положения системы в каждый момент времени. Совершенно не собираясь подробно анализировать здесь методы аналитической механики, сделаем лишь несколько замечаний, касающихся двух хорошо известных систем уравнений: уравнений Лагранжа и уравнений Гамильтона. Отличие метода Лагранжа от метода Гамильтона заключается в том, что в методе Лагранжа энергия системы выражается через обобщенные скорости, т е. через производные по времени от параметров, определяющих положение системы, тогда как в методе Гамильтона энергия выражается как функция обобщенных импульсов.
В рамках классических представлений можно очень просто перейти от обобщенных скоростей к обобщенным импульсам и обратно, поскольку импульсы там всегда определяются через скорости и, таким образом, уравнения Лагранжа и Гамильтона, как показывает их анализ, полностью эквивалентны и отличаются друг от друга лишь формой записи. Когда же мы перейдем к квантовой механике, то увидим, что уравнения Гамильтона, соответствующим образом записанные, сохраняют свое значение, чего нельзя сказать об уравнениях Лагранжа. Это легко объяснить, если заметить, что динамические понятия сохраняют в квантовой механике свое значение, тогда как кинематические понятия, вообще говоря, теряют свой смысл. Так, например, импульс, который, согласно классическим воззрениям, появляется как величина, выводимая из скорости, выступает в квантовой механике уже как вполне автономная величина, не зависящая более от понятия скорости, понятия уже не во всех случаях вполне определенного.
Очень важен и интересен, с точки зрения рассматриваемых здесь вопросов, раздел аналитической механики, посвященный теории Якоби. В самом деле, эта теория позволяет классифицировать различные виды движения материальной точки в заданных полях способом, который как бы подготавливает переход от классической механики к волновой. Мы не в состоянии вдаваться здесь в подробный анализ теории Якоби, требующий к тому же довольно сложного математического аппарата, и ограничимся лишь результатами, которые получаются в частном, но весьма важном случае статических, т е. не зависящих от времени, силовых полей.
Вся совокупность возможных траекторий материальной точки в таком поле сил зависит от шести параметров, поскольку каждая из этих траекторий определяется начальным положением и начальной скоростью материальной точки. Однако все эти траектории можно объединить в семейства, зависящие только от трех параметров, причем траектории одного и того же семейства образуют семейство кривых, ортогональных некоторому семейству поверхностей. Если найти одно из них, то ортогональные этому семейству кривые будут возможными траекториями материальной точки. Теория Якоби позволяет найти семейства таких поверхностей и с помощью решения некоторого дифференциального уравнения в частных производных первого порядка и второй степени, которое называется уравнением Якоби. Вывод этого уравнения основан на гамильтоновом выражении для энергии материальной точки в каждый момент времени как функции компонент ее импульса и координат в тот же момент времени.
Итак, мы видим, что теория Якоби позволяет разбить шестимерное множество траекторий материальной точки на семейства, каждое из которых содержит в себе трехмерное множество траекторий и соответствует некоторому семейству ортогональных им поверхностей. Каждое семейство траекторий и соответствующее ему семейство ортогональных поверхностей находятся точно в таком же отношении друг к другу, как лучи и волновые поверхности при рассмотрении волн в рамках геометрической оптики. Еще более века назад шотландский геометр Гамильтон отметил эту аналогию между механикой и геометрической оптикой, но только развитие квантовой теории позволило увидеть в ней нечто большее, чем простое сходство математического описания.