Литмир - Электронная Библиотека
Содержание  
A
A

По-видимому, Гейзенберг столкнулся с тем обстоятельством, что при переходе от классической точки зрения к квантовой нужно разложить все физические величины я свести их к набору отдельных элементов, соответствующих различным возможным переходам квантованного атома. Отсюда идея, на первый взгляд весьма сомнительная: представлять каждую физическую характеристику системы таблицей чисел, аналогичной той, которую математики называют матрицей. Подобно этому в классической теории ряды Фурье представляют собой разложение физической величины на бесконечные множества дискретных элементов, причем вся совокупность этих элементов изображает рассматриваемую величину. Конечно, эти элементы должны удовлетворять некоторым условиям, а именно, для больших квантовых чисел классические и квантовые разложения должны асимптотически совпадать. Как показал Бор, этим устанавливается соответствие между различными переходами и компонентами классического ряда. Фурье.

Гейзенберг увидел еще одно преимущество этого нового представления величин набором матричных элементов; он надеялся, применяя его, исключить из теории ненаблюдаемые величины, которые обременяли прежнюю квантовую теорию. Пользуясь довольно громоздким выражением, взятым из философского словаря, он занял строго феноменологическую позицию и хотел исключить из физической теории все, что нельзя наблюдать непосредственно.

Зачем нужно вводить в наши атомные теории положение, скорость или траекторию атомных электронов, если мы все равно не можем ни измерять эти характеристики, ни наблюдать их? Единственно, что нам известно об атоме – это его стационарные состояния, переходы между ними и излучения, которые сопровождают эти переходы. Поэтому в наши расчеты нужно вводить только величины, связанные с этими реально наблюдаемыми величинами. Такую задачу поставил себе Гейзенберг. В его матрицах элементы располагаются в строки и столбцы, причем каждый из них имеет два индекса: один соответствует номеру столбца, другой – номеру строки. Диагональные элементы, т е. те индексы которых совпадают, описывают стационарное состояние. Недиагональные элементы с разными индексами описывают переходы между стационарными состояниями, соответствующими этим индексам. Что же касается величины этих элементов, то ее нужно связать по формулам, полученным с помощью принципа соответствия, с величинами, характеризующими излучение при этих переходах. Таким путем будет создана теория, в которой все величины будут описывать наблюдаемые явления.

Конечно, было бы удивительно, если бы Гейзенбергу действительно удалось исключить из теории все ненаблюдаемые величины. Наличие в формализме его квантовой механики матриц, изображающих координаты и импульсы атомных электронов, оставляет в этом смысле некоторые сомнения. Однако эта попытка Гейзенберга, даже если ему и не удалось полностью выполнить свою философскую программу, привела к созданию новой механики, механики совершенно особого вида. Она дала замечательные результаты и представляет собой значительную ступень в развитии новых квантовых теорий.

2. Квантовая механика

Очень трудно даже совершенно поверхностно излагать квантовую механику, не пользуясь математическим формализмом, потому что можно сказать, сущность этой новой механики заключается именно в ее формализме. Тем не менее мы попытаемся дать читателю хотя бы смутное представление о том, что такое квантовая механика, механика матриц, рождением которой мы обязаны Гейзенбергу, а дальнейшим развитием – Гейзенбергу, Борну в Иордану.

Итак, Гейзенбергу принадлежит идея замены физических величин, с которыми имеют дело в атомной теории, таблицами чисел, матрицами. Исходя из принципа соответствия, он пытался вначале установить правила сложения и умножения различных матриц, каждую из которых нужно рассматривать как единое математическое целое. Он обнаружил, что эти правила сложения и умножения в точности совпадают с правилами для матриц, которыми пользовались математики в теориях алгебраических уравнений и линейных преобразований. Этот результат, a priori, отнюдь не очевидный, очень упростил задачу, ибо свойства алгебраических матриц были уже с давних пор хорошо известны.

Необычным оказалось одно свойство этих матриц – произведение их некоммутативно, оно зависит от порядка сомножителей. Произведение первой матрицы на вторую не равно произведению второй на первую.

Таким образом, Гейзенберг представил физические величины числами, не обладающими свойством коммутативного умножения. Этот факт можно рассматривать как самую основу квантовой механики, и Дирак в своей первой работе отстаивал именно эту точку зрения. Он считал, что переход от классической физики к квантовой заключается просто в представлении физических величин не обычными числами, а квантовыми числами, произведение которых не обладает свойством коммутативности.

Огромное большинство физиков того времени находило, что произвести подобную замену далеко не так просто.

Гейзенберг должен был найти также способ введения в свою теорию кванта действия, И снова он пошел по пути, которым постоянная hбыла введена в классические уравнения старой квантовой теорией, и попытался с помощью принципа соответствия перенести этот способ введения hв свою новую механику.

Результат оказался очень точным, хотя на первый взгляд несколько удивительным. Нужно было предположить, что при перемножении матрицы, соответствующей координате, на матрицу, соответствующую канонически сопряженной компоненте импульса, порядок множителей не безразличен и что разность между произведением этих двух величин, взятых в одном порядке, и их произведением в противоположном порядке равна постоянной Планка, умноженной на некоторое число.

Все другие канонические переменные квантовой механики коммутируют между собой, т е. их произведение не зависит от порядка сомножителей. Только когда рассматриваются произведения двух величин, канонически сопряженных в смысле аналитической механики, в результате их перестановки получается величина, отличающаяся от исходной так, что их разность пропорциональна h. В макроскопических явлениях, где величиной hможно пренебречь, все механические величины можно считать коммутирующими, и мы снова, как и должно быть, возвращаемся к классической механике. Такой путь введения постоянной Планка с помощью коммутационных соотношений, хотя и естественный, с точки зрения Гейзенберга, может показаться несколько странным. Ниже мы увидим, как можно его объяснить в волновой механике.

Уточнив таким образом свойства матриц, представляющих физические величины, Гейзенберг должен был вывести уравнения, описывающие их изменение со временем: иными словами, он должен был построить динамику. Он сделал это, смело предположив, что его матрицы подчиняются уравнениям, по виду совпадающим с уравнениями классической механики.

Согласно этой гипотезе для матриц можно написать канонические уравнения Гамильтона.

Однако эта идентичность динамических уравнений скорее кажущаяся, чем реальная, ибо в классической механике в уравнениях фигурируют обычные числа, а в механике Гейзенберга – матрицы. В этом корень важнейших различий. Тем не менее можно показать, что канонические уравнения квантовой механики позволяют вновь получить принцип сохранения энергии, и они не противоречат боровским соотношениям для частот. Кроме того, для атомных систем эти уравнения по причинам, на которых мы не можем здесь останавливаться, удовлетворяются лишь для некоторых определенных значений энергии. Итак, мы снова приходим к существованию стационарных состояний с квантованной энергией, и у нас есть метод вычисления этих энергий.

Сразу применив свой метод к самым классическим квантовым системам, Гейзенберг и его соратники вычислили квантованную энергию линейного осциллятора, атома водорода и т д. Часто их результаты оказывались в полном согласии со старой квантовой теорией, однако иногда совершенно от них отличались. Гак, например, в случаях линейного осциллятора, они получили вместо закона целых квантов, который предполагал Планк, закон полу целых квантов, о котором мы уже упоминали и который лучше согласуется с экспериментальными фактами.

40
{"b":"6681","o":1}