Прежде чем перейти к рассмотрению принципа соответствия, мы должны строго очертить рамки той сложной задачи, решение которой пытался получить Бор. Необходимо ясно понимать, насколько различны представления о природе излучения классической теории, с одной стороны, и квантовой теории, с другой. Согласно классической теории движущийся в атоме электрон излучает целый набор частот. Классическое излучение, таким образом, происходит непрерывно и одновременно испускается свет разных частот. В квантовой теории, наоборот, атомный электрон, находящийся на стационарной орбите, не излучает. Когда же он перескакивает из одного состояния в другое, он испускает единственный квант монохроматического излучения: различные монохроматические излучения, испущенные группой атомов одного сорта (например, различные спектральные линии, испущенные одним элементом в газообразном состоянии), соответствуют, таким образом, переходам, которые происходят в разных атомах. Иными словами согласно квантовой теории, излучение спектральных линий какого-либо элемента есть процесс дискретный, происходящий в виде отдельных элементарных актов.
Пожалуй, трудно найти два других столь отличающихся друг от друга представления, как классическое и квантовое. Поэтому прежде всего следует спросить, можно ли вообще построить между ними какое-нибудь связующее звено.
Если мы подумаем, как установить соответствие между классической картиной спектрального излучения и столь не похожей на нее картиной, вытекающей из квантовых представлений, мы сразу же заметим, что это соответствие, если оно только возможно, может быть лишь статистическим. Действительно, соответствие с классической картиной нельзя, очевидно, установить иначе, как рассматривая одновременное испускание всех спектральных линий. Между тем с квантовой точки зрения испускание каждого кванта монохроматического излучения есть индивидуальный акт, и, чтобы получить одновременное испускание всех спектральных линий, нам придется рассмотреть ансамбль очень большого числа атомов одинаковой природы, ансамбль, в котором постоянно осуществляются индивидуальные переходы всех видов, приводящие к испусканию различных спектральных линий рассматриваемого элемента. Необходимое понятие об интенсивности различных линий можно также ввести в квантовую теорию, лишь рассматривая его статистически.
Квантовый атом, в котором происходит переход, испускает только один квант, единицу монохроматического излучения. Для такого индивидуального акта бессмысленно говорить об интенсивности излучения. Чтобы определить интенсивность, необходимо снова рассмотреть ансамбль, состоящий из большого числа одинаковых атомов. В таком ансамбле в секунду происходит большое число переходов всех видов. Рассматривая все переходы определенного вида и все кванты излучения одной и той же частоты, испускаемые при этих переходах, можно определить статистическое значение интенсивности как среднюю плотность этих квантов в пространстве. Эту интенсивность можно уже сравнивать с интенсивностью, вычисленной по классической теории.
Читатель, несомненно, начинает догадываться, как можно было бы установить требуемое соответствие. Рассмотрим, с одной стороны, ансамбль фиктивных атомов, подчиняющихся законам классической электромагнитной теории, а с другой – ансамбль реальных квантовых атомов. Попытаемся установить соотношение между частотами, интенсивностями и поляризацией излучения, испущенного каждым из этих двух ансамблей, таким образом, чтобы расчет спектра излучения первой системы хорошо известным методом классической электродинамики дал некоторые сведения об излучении второй системы, т е. об излучении реальных атомов. A priori ясно, что найти такое соотношение, конечно, нелегко. Однако необычайно проницательный ум Бора помог ему отыскать в этой труднейшей задаче, если не окончательное и вполне определенное, то по крайней мере предварительное решение, которое оказалось чрезвычайно полезным и полным глубокого физического содержания.
2. Принцип соответствия Бора
Сравним набор большого числа фиктивных атомов, которые подчиняются классическим законам, с набором такого же числа реальных квантованных атомов. Если нам известно, как движутся электроны в атомах первого типа, то мы знаем, как вычислить частоты, интенсивности и поляризацию испускаемого излучения. Теперь, воспользовавшись этими результатами, попытаемся выяснить, каковы частоты, интенсивности и поляризация излучения, испускаемого реальными атомами. Если бы мы ничего не знали об этих последних, то не существовало бы никаких средств решения этой задачи. К счастью, нам известны значения частот, излучаемых квантованными атомами. Они даются правилом Бора.
Таким образом, первое, что приходит в голову – это сравнить боровские частоты с теми, которые испускали бы фиктивные атомы согласно классической теории. Если такое сравнение проделать, то оказывается, что в общем случае между этими двумя категориями частот не существует простого соотношения. Других же путей для дальнейшего продвижения в нужном направлении мы не видим.
Именно здесь и проявилась изобретательность Бора. Он заметил, что электромагнитная теория всегда – очень хорошее приближение для описания явлений макроскопического масштаба. С квантовой же точки зрения макроскопические явления это те, в которых играют роль большие квантовые числа. Поэтому кажется вероятным, что результаты квантовой теории должны асимптотически стремиться к классическим в области больших квантовых чисел. В этой области и следует искать согласования двух рассматриваемых теорий. А так как мы знаем, как вычислять и классические, и квантовые частоты, то нужно прежде всего выяснить, совпадают ли эти частоты для случая стационарных состояний, отвечающих большим квантовым числам.
Рассмотрим теперь одну из внешних электронных траекторий квантового атома, соответствующую большому квантовому числу. Одновременно рассмотрим такую же траекторию электрона в фиктивном классическом атоме. В классическом атоме электрон непрерывно испускает целый набор частот, кратных определенным основным частотам, которые определяются движением электрона. В квантовом атоме электрон в стационарном состоянии не излучает, но он может совершать переходы, при которых произойдет излучение с частотами, определенными правилом Бора.
Оказывается, что каждой частоте, фигурирующей в классической теории фиктивного атома, соответствует определенный переход квантового атома, который приводит к испусканию излучения той же частоты. Таким образом, в области больших квантовых чисел существует хорошее согласие между частотами излучения, испускаемого по классическим законам, и частотами, которые может излучать в процессе перехода квантовый электрон. Но в то время как классический атом испускает все частоты, о которых идет речь, непрерывно и одновременно, квантовый атом может испускать при каждом отдельном акте излучения лишь одну из них. Правда, это глубокое различие механизмов испускания не мешает совпадению результатов: два мысленно сравниваемых ансамбля атомов будут испускать (в области больших квантовых чисел) одинаковые спектральные линии.
Подтвердив таким образом одинаковость предсказаний классической и квантовой теории в отношении частот при больших значениях квантовых чисел, Бор допустил, что предсказания классической теории в отношении интенсивностей и поляризации излучения ансамбля фиктивных атомов, по крайней мере в этой области, будут справедливы для ансамбля реальных атомов. В случае реальных атомов испускание спектральных линий происходит при отдельных переходах между квантованными состояниями. Интенсивность спектральной линии будет при этом зависеть от среднего числа атомов ансамбля, совершающих в единицу времени соответствующий переход, т е. от вероятности того, что каждый квантовый атом совершит в единицу времени упомянутый переход. Если предположить, следуя Бору, интенсивность данной спектральной линии, испущенной вторым ансамблем, равной вычисленной классически интенсивности той же спектральной линии для первого ансамбля, то это позволит нам оценить с помощью формул электродинамики вероятность данного квантового перехода.