Литмир - Электронная Библиотека

Эволюция оставляет природе только виды, приспособившиеся к окружающей среде. Подобно этому, память отбирает, как бы «просеивает» и закрепляет в мозгу только жизненно важные связи.

Вот и опять загадка XX века. О процессах памяти на уровне работы нервных клеток и отдельных областей мозга современная наука о мозге, призвав себе на помощь электронику и математику, накопила много фактических данных. Значительно меньше их в области взаимосвязей вновь открытых процессов, в познании целостности организма. «Возможно ли принципиально изучать память на молекулярном уровне? — ставил вопрос известный ученый академик В. Н. Черниговский. — Полагаю, что возможно, но решить проблему на этом уровне — невозможно. Память, даже если к ней причислить и так называемые следовые феномены, — это свойство целого организма, будь то планария или человек».

Капитальные, обобщающие работы — дело будущего. Одни ученые считают, что мы познаем секреты своей памяти, научимся управлять ею еще до 2000 года.

Другие переносят эту дату к третьему, четвертому и даже шестому десятилетию будущего века.

Но кое-что известно уже сегодня. В институте биофизики Академии наук СССР, расположившемся в научном городке Пущино-на-Оке, установили, что в нервных клетках идет активный процесс синтеза белка. Причем более активный, чем это обычно нужно клеткам для поддержания своей жизнеспособности. Эта «жадность» тем более удивительна, что нервные клетки, как известно, в отличие от других клеток в течение жизни практически не делятся и фактически не изменяются. Вот уже первая догадка: в период роста организма имеется много «чистых» нервных клеток, которые, словно губка влагу, спешат впечатать в себя раздражения, поступающие из окружающего мира. Окажется первой утка — ее образ и «засядет» в мозгу. А окажется мячик — закрепится он.

Но синтез белков производится в нервных клетках и вполне взрослых животных. Причем довольно активно и в относительно больших количествах. Зачем? Почему?

Вы неоднократно видели в журналах фотографии человеческой головы, прикрытой кастрюлеобразным шлемом с большущим количеством разноцветных проводов. В подписях к этим снимкам разъяснялось, что в таком-то институте изучается электрическая активность отдельных областей мозга. И эти снимки перестали вызывать особый интерес, ибо уже давно известно, что каждая живая клетка, в том числе нервная, вырабатывает биотоки. Известно также и то, что электрические импульсы играют важнейшую роль в работе всей центральной нервной системы. Такие импульсы, через аксоны и дендриты, передаются от клетки к клетке, обеспечивают прием и вывод сигналов, способствуют возбуждению или торможению нейронов и образованию между ними временных или закрепленных связей (что, кстати, и считалось основой материального закрепления памяти и инстинктов), а также подают команды мышцам и другим исполнительным органам.

«Электрическая» картина мозга более или менее изучена. Но вот, оказывается, нервные клетки вырабатывают вроде бы и ненужные им белки. Первый вопрос: как вновь открытый процесс согласуется с «электрическим»?

Напомним, что активной работе клетки всегда должно предшествовать возбуждение, которое поступает в качестве импульса в ответ на какое-то раздражение извне.

При этом клетка, в принципе, всегда стремится успокоиться, то есть возвратиться к исходному состоянию.

Опыты Б. Н. Вепринцева наглядно показали, что нервная клетка вслед за биоэлектрическим импульсом начинает вырабатывать определенные белки. Именно после раздражения, то есть сигнала, принесшего какие-то данные, начинается синтез белков, а не потому, что их стало не хватать клетке.

Это странное поведение природы ныне получило объяснение. Повышенное количество белков, по-видимому, требуется клетке как бы в память о том, что свою разрушенную оболочку надо «залатать», а для этого и требуются излишние белки — стройматериалы. Теперь у клетки не разрушается оболочка, но биоэлектрический импульс повышает ее проницаемость, и клетка «атавистически» спешит выработать побольше белков. Постепенно в процессе эволюционного развития в нервных клетках выработалась способность в ответ на импульс-сигнал, несущий информацию, вырабатывать определенные белки, ибо эти сверхсложные молекулы могут отлично запоминать любую информацию.

«Электрическая» и «химическо-генетическая» теория памяти не противоречат, а дополняют друг друга. Каждая единица информации образует в мозгу электрическую цепь из нейронов. Так зашифрованные образы накапливают временную память. Циркулирующие в нейронных цепях биотоки, по-видимому, возбуждая клетки, действуют первоначально на хранителей информационной памяти — на ДНК нервных клеток. При этом, как показали замечательные по точности эксперименты биохимика Зидена, под воздействием биотоков ДНК изменяют свою структуру, что сказывается в свою очередь на громадных молекулах РНК, образующихся в определенном порядке поблизости спиральных ветвей «лестнички» ДНК. Затем, уже через посредство РНК, синтезируется строго определенный белок, структура которого соответствует — а значит, «помнит!» — сигналу-раздражителю. Поэтому, если даже распадется временная память, образовавшаяся от биоэлектрических связей между нейронами, то все равно условный образ запечатлен и может быть восстановлен. Стоит лишь в нервную клетку попасть новому сигналу-раздражителю, несущему ту же информацию, что была уже закреплена одним из белков, как этот белок, подобно камертону, отреагирует на импульс и мозг «вспомнит».

Давайте на минутку отвлечемся. В последние годы точно установлено, что ряд условных рефлексов, выработанных последовательными раздражителями, создает в животном организме динамический стереотип. Такая система рефлексов образуется в процессе жизни и разрушается, если образовавшие их условные раздражители станут другими или будут следовать в другом порядке. Если же динамический стереотип сохранится, то он будет очень активным: при предъявлении хотя бы первого условного рефлекса быстро срабатывает вся цепочка нового стереотипа. Человек может сознательно выработать динамические стереотипы (постоянное время пробуждения и засыпания, время приема пищи, время работы и так далее). При этом нервная система будет уставать намного меньше, так как при системе динамических стереотипов один нервный процесс стимулирует следующий.

Новые представления о «механизме» памяти, а они в последние десятилетия находят все более широкое экспериментальное подтверждение, вселяют заманчивую надежду на возможность сознательного управления памятью в будущем. Ведь у каждого из нас громоздится в мозгу невероятно большое количество разных знаний и наблюдений. Но мы часто не можем извлечь из своей собственной головы нужную информацию в нужный момент.

Как было бы здорово, искусственно возбудив головной мозг, например, суметь дословно воспроизвести в своей памяти нужную сейчас вам старую газетную статью или припомнить, что вам говорил преподаватель 20–30 лет назад… Если каждый сигнал закодирован белком или, вернее, нуклеиновой кислотой специальной структуры, то эта фантазия не столь несбыточна.

Уж коль мы заговорили о научной фантастике, то уместно сказать и о мечте профессора Калифорнийского университета Элофа Карлссона. Не столь давно ученые убедились в превосходном умении древних египтян сохранять биологический материал. Канадский исследователь Питер Левин, наблюдая в электронный микроскоп маленькие кусочки кожи и мускулов руки мумии, которая была изготовлена за 600 лет до нашей эры, обнаружил, что ряд клеток настолько сохранился, что в них даже можно обнаружить целиком неповрежденными клеточные ядра, а также цитоплазменные мембраны, митохондрии и другие тонкие детали клетки. Известны также отдельные части человеческих тел, хорошо сохранившиеся в благоприятных природных условиях. Так, в 1983 году американские ученые обнаружили на дне одного из флоридских озер в слое торфа два человеческих черепа, возраст которых определяется в 7 тысяч лет. В каждом из черепов оставался мозг, при сравнительно небольших повреждениях мозговых тканей. При помощи соответствующего анализа в тканях нашли нитевидные молекулы ДНК. «Это — самое древнее биологическое вещество, из которого нам удалось извлечь ДНК, — заявил Г. Дорог из университета штата Флорида. — Эта находка возродила надежды, что удастся найти и гораздо более древние образцы биологической ткани. Тогда мы сможем получить важную информацию о химической эволюции жизни в течение миллионов лет».

65
{"b":"651351","o":1}