Рис. 5.6. В теории струн браны могут наматываться на часть дополнительных измерений, эти измерения могут быть пронизаны потоками созданных бранами полей — в результате получаются «одетые» пространства Калаби — Яу. (На рисунке представлена упрощённая версия пространства Калаби — Яу, «бублик с тремя дырками». Схематично показаны намотанные браны и линии потока в виде жгутов, намотанных на определённые части пространства)
Даже грубый подсчёт даёт представление о масштабе. Рассмотрим поток. Так же как в квантовой механике устанавливается, что число фотонов и электронов всегда целое — может быть 3 фотона и 7 электронов, но не 1,2 фотона или 6,4 электрона, — точно так же квантовая механика доказывает, что силовые линии потока собираются в целочисленные пучки. Они могут пронизывать охватывающую поверхность один раз, два раза, три раза и так далее. В принципе, помимо требования целочисленности, других ограничений не существует. На практике, когда количество линий в потоке велико, он стремится исказить пространство Калаби — Яу, что делает использованные ранее математические методы неточными. Во избежание попадания в этот математический омут учёные, как правило, рассматривают потоки с количеством линий не более 10, а часто и того меньше.{43}
Это означает, что если данное пространство Калаби — Яу содержит одну пустую полость, то её можно одеть потоком десятью разными способами, что приведёт к десяти новым пространствам дополнительных измерений. Если данное пространство Калаби — Яу имеет две такие полости, то имеем 10 × 10 = 100 различных способов одеть поток на пространство (10 возможных потоков на первую полость и 10 на вторую); если три пустые полости — имеем 103 различных способов одеть поток на пространство, и так далее. Насколько большим может быть это число? Некоторые пространства Калаби — Яу имеют порядка пятисот пустых полостей. Рассуждая аналогично, получаем, что число различных форм пространств дополнительных измерений будет порядка 10500.
Таким образом, вместо того чтобы просеять кандидатов и отобрать из них несколько выделенных пространств дополнительных измерений, точные математические методы открыли целый рог изобилия новых возможностей. Совершенно неожиданно выяснилось, что число возможных нарядов пространств Калаби — Яу значительно превышает число частиц в наблюдаемой части Вселенной. Для некоторых струнных теоретиков такой вывод стал большим разочарованием. Как подчёркивалось в предыдущей главе, не имея какого-нибудь способа выбрать точный вид дополнительных измерений — который, как мы теперь знаем, дополнен также выбором одетого на пространство потока, — математический аппарат теории струн лишается своей предсказательной силы. Так много надежд возлагалось на математические методы, которые могут работать вне рамок теории возмущений. Теперь же, когда некоторые из этих методов были реализованы, проблема фиксации формы пространства дополнительных измерений только усугубилась. После этого некоторые струнные теоретики совсем приуныли.
Другие, более жизнерадостные, верят, что сдаваться ещё рано. Однажды — возможно совсем скоро, а может и нет — будет найден недостающий принцип, определяющий вид дополнительных измерений, включая конкретный поток, в котором будет щеголять та или иная форма.
Иные теоретики придерживаются ещё более радикальной точки зрения. Возможно, говорят они, за десятилетиями бесплодных попыток установить точную форму пространства дополнительных измерений стоит некий смысл. Возможно, совершенно вызывающе продолжают эти радикалы, необходимо рассматривать все возможные формы и потоки, возникающие в математическом аппарате теории струн. Возможно, настаивают они, причина, по которой математика наполнена этими возможностями, в том, что они все реальны, каждая из форм задаёт дополнительные измерения в своей отдельной вселенной. И может быть, усмиряя необузданный полёт фантазии наблюдательными фактами, именно это и необходимо для рассмотрения самого трудного, по всей видимости, вопроса — космологической постоянной.
Глава 6. Новые мысли о старой константе
Ландшафтная мультивселенная
Разница между 0 и 0,000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001 может показаться не такой уж большой. И это именно так при любых обычных измерениях. Однако есть всё усиливающееся подозрение, что эта крошечная разница может оказаться ответственной за кардинальный сдвиг в том, как мы представляем ландшафт окружающей действительности.
Крошечное число, указанное выше, впервые было измерено в 1998 году двумя группами астрономов, которые проводили тщательные наблюдения взрывающихся звёзд в удалённых галактиках. С тех пор эти данные были подтверждены множеством других исследований. Что это за число, почему вокруг него такая шумиха? Это не что иное, как то, что было указано в третьей строке гравитационной декларации — космологическая постоянная Эйнштейна, определяющая количество невидимой тёмной энергии, которой пропитана ткань пространства.
Так как этот результат продолжает подтверждаться в тщательных исследованиях, физики вынуждены признать, что наблюдения и выводы, сделанные в предшествующие десятилетия и убедившие многих в том, что космологическая постоянная равна 0, должны быть отвергнуты. Теоретики начали спешно выяснять, где же они ошибались. Но ошибались не все. Годами ранее высказывались идеи, что ненулевая космологическая постоянна будет однажды обнаружена. В чём состояло ключевое предположение? В том, что мы живём в одной из многих вселенных. Многих вселенных.
Возвращение космологической постоянной
Напомню, что космологическая постоянная, если она существует, наполняет пространство невидимой энергией — тёмной энергией, — знаковым свойством которой является гравитационное отталкивание. Эйнштейн увлёкся этой идеей в 1917 году, считая, что порождаемая космологической постоянной антигравитация сбалансирует гравитационное притяжение обычной материи во Вселенной и таким образом приведёт к картине космоса, который не будет ни сжиматься, ни расширяться.[35]
Часто говорят, что когда Эйнштейн узнал о наблюдениях Хаббла 1929 года, обнаруживших расширение пространства, то назвал космологическую постоянную своей «величайшей ошибкой». Георгий Гамов вспоминал разговор, в котором Эйнштейн сказал об этом, но, учитывая склонность Гамова к литературным гиперболам, есть сомнения в надёжности этих воспоминаний.{44} Но совершенно точно, что Эйнштейн выбросил космологическую постоянную из своих уравнений после того, как наблюдения показали, что его вера в статичную вселенную безосновательна. Спустя много лет он заметил, что если бы «хаббловское расширение было обнаружено в момент создания общей теории относительности, то космологическая постоянная никогда не была бы введена».{45} Но «задний ум» не всегда крепок; иногда он может затуманить исходную идею. В 1917 году в письме, написанном физику Виллему де Ситтеру, Эйнштейн высказался более подробно:
В любом случае остаётся один вопрос. Общая теория относительности позволяет включить космологическую постоянную в полевые уравнения. Однажды наши настоящие знания об устройстве неподвижного звёздного неба, явные движения неподвижных звёзд и положение спектральных линий в зависимости от расстояния, возможно, станут достаточными для эмпирического разрешения вопроса о том, равна нулю или нет космологическая постоянная. Убеждённость — мощная пружина, но ненадёжный судья.{46}