Литмир - Электронная Библиотека
Содержание  
A
A

Я независимо пришёл к описанному выше математическому результату во время подготовки к лекциям по курсу квантовой механики. Было бы полным восторгом получить вероятностную интерпретацию квантовой механики, напрямую следующую из математического формализма — я представляю как учащённо бились сердца всех физиков, которые, как и я, получили этот результат. Поражает, однако, сколь мало известен этот результат в физическом сообществе. Например, я не знаю ни одного стандартного учебника по квантовой физике, в котором он содержится. Я считаю, что этот результат можно осмыслить с нескольких ракурсов: во-первых, как сильную математическую мотивацию вероятностной интерпретации волновой функции Борном — если бы Борн не «угадал» эту интерпретацию, то кто-нибудь, в конце концов, вывел бы её прямо из математического формализма; во-вторых, как проверку совместимости вероятностной интерпретации — если бы этот математический результат не выполнялся, то встал бы вопрос о внутренней осмысленности вероятностной интерпретации волновой функции.

77

Я использовал выражение «рассуждения закстарианского типа» для обозначения подхода, в котором понятие вероятности возникает благодаря неведению каждого обитателя из множества миров относительно того, какому конкретному миру он принадлежит. Лев Вайдман предложил отнестись более серьёзно к идее закстарианского сценария. Он говорит, что понятие вероятности возникает в многомировом подходе во временном промежутке между завершением измерения и считыванием полученного результата экспериментатором. Но, возражают скептики, ложка хороша к обеду: обязанность квантовой механики и науки вообще состоит в том, чтобы давать предсказания о том, что произойдёт, а не о том, что произошло. Более того, сомнительно, чтобы понятие квантовой вероятности основывалось на отсрочке во времени, которая легко поддаётся устранению: если учёный имеет немедленный доступ к результатам эксперимента, то возникает опасение, что квантовая вероятность может быть вообще вытеснена из формализма. (Подробное обсуждение содержится в работах: David Albert, Probability in the Everett Picture, «Many Worlds: Everett, Quantum Theory, and Reality», eds. Simon Saunders, Jonathan Barrett, Adrian Kent, David Wallace. Oxford: Oxford University Press, 2010; Peter Lewis, Uncertainty and Probability for Branching Selves, philsciarchive.pitt.edu/archive/00002636.) Окончательный вердикт о гипотезе Вайдмана и подобной вероятности неведения таков: если я подбрасываю монетку в контексте обычной, одной единственной Вселенной и говорю, что есть 50-процентная вероятность того, что выпадет орёл, то я говорю так по той причине, что хотя я и получил всего один результат, на самом деле существуют два результата, которые я мог бы получить. Однако давайте я закрою глаза и представлю, что я только что измерил положение нашего электрона. Я знаю, что монитор детектора показывает либо Земляничные поля, либо мемориал Гранта, но я не знаю, что именно. Тогда вы обращаетесь ко мне. «Брайан, — говорите вы, — какова вероятность того, что монитор показывает мемориал Гранта?» Чтобы ответить, я вспоминаю подбрасывание монетки, но как только я начинаю рассуждать в том же духе, меня одолевают сомнения. «Ммммм, — думаю я, — действительно ли есть два результата, которые я мог бы получить? Единственное, что отличает меня от другого Брайана, — это показание монитора. Представить, что на мониторе показана другая надпись, — это всё равно что представить, что я — это не я. Это представить, что я — другой Брайан». Поэтому, хотя я не знаю, что написано на мониторе, я — тот парень, который говорит сейчас в моей голове — не мог бы получить никакого другого результата; отсюда следует, что моё неведение не может быть причиной вероятностного мышления.

78

Считается, что учёные должны быть объективны в своих оценках. Но я спокойно отношусь к тому, что мне хотелось бы, чтобы многомировой подход оказался верным, по причине его математической экономичности и далеко идущих последствий для понимания реальности. В то же время, я проявляю здоровый скептицизм, который исходит из трудностей, с которыми сталкивается включение понятия вероятности в этот подход, потому я полностью открыт альтернативным способам решения этого вопроса. Два из них являются хорошим материалом для обсуждения. В одном делается попытка доработать незавершённый копенгагенский подход до полной теории; другой можно рассматривать как многомировой подход, но без множественности миров.

В первом подходе, инициаторами которого являются Джанкарло Джирарди, Альберто Римини и Туллио Вебер, делается попытка придать смысл копенгагенской схеме путём подстройки математического аппарата теории, основанного на уравнении Шрёдингера, так чтобы он действительно приводил к схлопыванию волны вероятности. Но проще сказать, чем сделать. Подстроенный математический аппарат теории не должен изменять волны вероятности объектов микромира, таких как отдельные частицы или атомы, поскольку у нас нет причин вносить поправки в успешное описание явлений в этой области. Но подстройка обязательно требуется, когда в игру вступают объекты макромира, такие как лабораторное оборудование, что приводит к схлопыванию общей волны вероятности. Джирарди, Римини и Вебер развили соответствующий математический аппарат. Итог их работы таков, что с помощью предложенных ими подстроенных уравнений акт измерения действительно заставляет волну схлопнуться; это приводит к эволюции волны вероятности, показанной на рис. 8.6.

Второй подход, изначально развитый Луи де Бройлем в 1920-х годах и затем спустя десятилетия дополненный Дэвидом Бомом, начинается с математического предположения, перекликающегося с идеями Эверетта. Уравнение Шрёдингера при любых обстоятельствах обязано задавать эволюцию квантовых волн. Поэтому в теории де Бройля — Бома волны вероятности распространяются так же, как в многомировом подходе. Однако теория де Бройля — Бома основана на идее, которую я ранее охарактеризовал как ошибочную: в этом подходе все, кроме одного, из множества миров, содержащиеся в волне вероятности, являются лишь возможными мирами; только один мир считается реальным.

С этой целью в данном подходе перестают петь заученную квантовую песню о волне или частице (что до измерения электрон — это волна, а после измерения электрон превращается в частицу), а вместо этого предлагают одновременно рассматривать волны и частицы. В противоположность стандартной квантовой точке зрения, де Бройль и Бом считают частицы крошечными, локализованными сущностями, эволюция которых происходит вдоль определённых траекторий, что приводит к обычной, однозначной действительности, так же как и при классическом описании. Единственный «реальный» мир — это тот, в котором частицы находятся в своих единственных, определённых положениях. При этом квантовые волны играют совершенно другую роль. Вместо воплощения всей совокупности реальностей, роль квантовой волны сводится к руководству движением частиц. Квантовая волна толкает частицы в те положения, где высота волны большая, что делает вероятным обнаружение частиц в этих положениях, и отталкивает от положений, где высота волны мала, что делает обнаружение частиц в этих положениях маловероятным. Для описания этого процесса де Бройлю и Бому требуется дополнительное уравнение, описывающее действие квантовой волны на частицу, поэтому хотя от уравнения Шрёдингера не отказываются, но теперь на сцене появляется и другой математический исполнитель. (Заинтересованный читатель познакомится с этими уравнениями ниже.)

В течение многих лет бытовало мнение, что подход де Бройля — Бома не стоит того, чтобы на него тратить время, что он перегружен дополнительными вещами — не только вторым уравнением, но также, поскольку он вовлекает одновременно частицы и волны, удвоенным списком ингредиентов. Недавно, однако, стали раздаваться голоса, что этот критицизм надо вложить в контекст. Из работы Джирарди — Римини — Вебера совершенно ясно следует, что даже в версии флагмана квантовой механики, в копенгагенском подходе, требуется второе уравнение. Помимо этого, включение как частиц, так и волн приносит огромную выгоду: возрождается понятие объектов, движущихся вдоль определённых траекторий, происходит возвращение к базовому, привычному свойству реальности, от которого копенгагенцы несколько поспешно убедили всех отказаться. На более техническом уровне критицизм состоит в том, что этот подход является нелокальным (новое уравнение показывает, что воздействие в одной точке моментально переносится в удалённые точки), и его трудно совместить со специальной теорией относительности. Но важность первого критического замечания снижается, если заметить, что даже в копенгагенском подходе имеются нелокальные свойства, которые, к тому же, подтверждены экспериментально. Вопрос насчёт совместимости со специальной теорией относительности безусловно важен, и его ещё предстоит решить в полном объёме.

108
{"b":"586633","o":1}