Литмир - Электронная Библиотека
Содержание  
A
A

Затем Лебедев применил главное средство: он поставил спиртовку под дно баллона, ртуть стала испаряться, ее пары, подымаясь, вытесняли молекулы воздуха и гнали их к насосу. Насос получил работу — он начал выкачивать пары ртути, а вместе с ними и молекулы воздуха.

На следующий день работа продолжалась в том же порядке. Насос качал. Лебедев с помощником освещали баллон электрической дугой, подогревали баллон спиртовкой. Ртуть испарялась. И на третьи сутки было то же самое — свет, нагревание…

Так ученый работал несколько дней до тех пор, пока не убедился, что ни насос, ни свет, ни пары ртути более не могут выгнать из баллона ни одной молекулы. Теперь оставалось избавиться от остатков ртутных паров. Это уж было совсем просто. Воздушный насос остановили, а баллон обложили толченым льдом с солью. Температура в баллоне резко упала. Ртутные пары вымерзли и осели.

Таким образом давление газов в баллоне удалось довести до миллиардных долей атмосферы. Можно было приступить к опыту.

Однако прежде чем его начать, Лебедев измерил плотность светового потока в приборе, то есть узнал, сколько света пошлет его фонарь на лопасти вертушки, и вычислил, с какой силой лучи света будут давить на платиновые кружочки. Опыту Лебедев хотел оставить только скромную роль: подтвердить и уточнить его теоретические расчеты.

Исторический опыт начался.

Прибор Лебедева был устроен так, что световой луч можно было направлять попеременно то на правые, то на левые крылышки. Ученый передвигал зеркала, и свет ударял по платиновым кружкам — по правым спереди, по левым сзади. От толчков света вертушка, висевшая на стеклянной нити, поворачивалась из стороны в сторону, как балансир карманных часов.

Рождение миров - i_046.jpg

Схема прибора П. Н. Лебедева. С — собирательные линзы, Д — диафрагма, К — конденсатор, В— водяной фильтр, 3 — зеркала, 3–3 — зеркала на подвижной пластинке, Л — линзы, Р — пластинка, О — вертушка.

Лебедев посылал луч и на зачерненные кружки и на блестящие, на легкие и на утяжеленные. Наблюдая и измеряя размахи качаний вертушки, он доказал, что свет действительно давит на все предметы, на которые падает.

Величина светового давления исключительно мала. На Земле, то есть на расстоянии в 149 674 километров от светоносной поверхности Солнца, свет давит с силой всего лишь в 0,474 миллиграмма на квадратный метр.

Лебедев так блестяще, так тщательно и убедительно провел свой опыт, что никто в мире не мог возражать ему. Самые ярые противники Лебедева, упорно отрицавшие существование светового давления, сдались и признали себя неправыми.

Определив силу светового давления на твердые тела, Лебедев стал исследовать — как велико давление световых лучей на частицы газов. Это была несравненно более трудная задача. Ее решение потребовало почти десятилетнего напряженного труда. Лебедев построил и испытал более двадцати приборов. Только в 1910 году последним, остроумно задуманным, опытом Лебедев добился цели — световое давление на газы было доказано, и загадка кометных хвостов решена.

Преждевременная смерть (П. Н. Лебедев умер 14 марта 1912 года) прервала его исследования светового давления.

Эту работу продолжили его ученики и преемники.

Судьба пылинок и песчинок

Академик В. Г. Фесенков очень основательно исследовал происхождение и судьбу пылинок, витающих в солнечной системе. Он указал, откуда берется эта пыль и куда исчезает.

Сильно засоряют межпланетное пространство астероиды. Они роятся главным образом в промежутке между орбитами Марса и Юпитера. Их число велико, а пути изменчивы. Сталкиваясь между собой, эти летающие скалы и камни дробятся, а их осколки и пыль разлетаются в стороны.

Каменные глыбы в ядрах комет, ударяясь друг о друга, крошатся сами и размалывают камешки, попавшие между ними.

Вдребезги разбиваются метеориты, падающие на поверхность астероидов и лун, лишенных атмосферы.

Астрономы В. В. Федынский и К. П. Станюкович подсчитали, что метеорит, ударившийся о поверхность Луны со скоростью свыше 50 километров в секунду, не просто разобьется на кусочки. Энергия его движения при ударе перейдет в теплоту, и метеорит взорвется, как самый настоящий артиллерийский снаряд, начиненный сильнейшим взрывчатым веществом.

Горные породы, обращенные в пыль взорвавшимся метеоритом, будут выброшены прочь. Часть этой пыли осядет обратно на поверхности Луны, а часть рассеется в пространстве, так как тяготение Луны не сможет ее удержать.

Астрономическими наблюдениями уже доказано, что поверхность Луны, ее долины и углубления цирков покрыты слоем пыли, образовавшейся в результате непрерывной космической бомбардировки.

По расчетам В. В. Федынского и К. П. Станюковича количество вещества, выброшенного в пространство взрывом метеорита, во, много раз превышает вес самого метеорита. А это означает, что масса Луны от падения метеоритов не увеличивается, а уменьшается. Метеориты как бы «обгрызают» Луну.

Такова же судьба всех остальных тел солнечной системы, лишенных атмосфер. Метеориты их дробят, а осколки выбрасывают в пространство. Планеты, одетые атмосферами, и Титан, спутник Сатурна, защищены от губительного действия метеоритов. Воздушная оболочка тормозит стремительное падения метеоритов и не позволяет пыли разлетаться в пространстве.

Рождение миров - i_047.jpg

Свет электрической дуги, направленный на струйку мелких песчинок, отбрасывает их в сторону.

Судьба пылинок, попавших в межпланетное пространство, складывается в зависимости от их размеров. Для каменной пылинки, диаметром в 0,59 микрона и имеющей форму шарика, давление солнечных лучей полностью уравновешивает тяготение. Такая пылинка не может ни приблизиться к Солнцу, ни удалиться от него. Железные пылинки, как более тяжелые, способны находиться в таком «взвешенном» положении, если они имеют в поперечнике 0,16 микрона.

Разумеется, пылинок, обладающих в точности такими размерами, крайне мало. Большинство их либо больше, либо меньше. Тяжелые и крупные подчиняются тяготению Солнца, маленькие и легкие — световому давлению.

Как только где-либо образуется тончайшая пыль, солнечные лучи подхватывают ее и выбрасывают далеко за орбиту Плутона. Свет Солнца выполняет роль «дворника» — он «подметает» пространство, очищая его от пыли.

Точно так же и космическая пыль из межзвездного пространства не может приблизиться к солнечной системе. Солнце своими лучами расчищает себе широкий путь, подбирая только наиболее крупные частички.

Все крупные пылинки и песчинки, как и другие тела солнечной системы, обращаются вокруг Солнца, но пути их в пространстве извилисты и своеобразны. Им, как самым маленьким членам солнечной семьи, приходится подчиняться и тяготению Солнца, и тяготению планет, и давлению солнечных лучей.

Орбиты пылинок искривляются под влиянием притяжения наиболее массивных членов солнечной системы, а, попадая в тень планеты, астероида или другой песчинки, частички «проваливаются» в тень, как в яму. В тени световое давление не действует, остается одно тяготение, и пылинки изменяют направление полета. Если это происшествие случилось недалеко от планеты и пылинка не успеет выскользнуть из тени, она заканчивает свое путешествие — сгорает яркой искоркой в атмосфере планеты.

Притяжение и отталкивание

Свет не только отталкивает пылинки в сторону. Он одновременно тормозит их движение, замедляет их полет. Свет и в этом отношении похож на ветер. Ветер мешает велосипедисту, не только когда дует «в лоб». При боковом ветре тоже ехать очень трудно. Боковой ветер тормозит движение.

Точно так же действует и свет. Пылинка, летящая вокруг Солнца, понемногу теряет скорость, и орбита у нее получается не круговая, а спиральная.

24
{"b":"581982","o":1}