Литмир - Электронная Библиотека
Содержание  
A
A

Эмоцией, противоположной смеху, при таком подходе оказывается стыд, который, как и смех, отличает необходимость осмысления. Но стыд обращен не к внешним объектам, а вовнутрь человека, на себя самого. И если смехом можно поделиться, то стыд пережить можно только самому.

Многие наблюдатели отмечают, что смех лучше всего раскрывает человека, так как показывает, над чем и как человек смеется и как он способен страдать или гневаться.

Известен случай с американским психологом Норманом Казинсом, который имел смертельный диагноз — коллагеноз. Казинс попросил перевести его в гостиницу и принялся один за другим смотреть комедийные фильмы. Через несколько дней почти непрерывного смеха его перестали мучить боли, а анализы улучшились. Вскоре он поправился и смог вернуться к работе. Поэтому — смейтесь на здоровье!

Как летает воздушный шар?

О воздушном шаре нет никаких древних мифов, как, например, про крылья Дедала и Икара, да и изобретен он сравнительно недавно. Чтобы придумать воздушный шар, надо было наблюдать не за птицами, а за рыбами. Воздушный шар плавает в воздухе точно так же, как предметы малой плотности в воде. Но провести такую аналогию, конечно, гораздо труднее, чем сравнение с крыльями.

Первым оказался итальянский монах Франческо Лана. В 1670 году он предложил сделать шары из тонкой меди и откачать из них воздух. Но он и сам понимал, что атмосферный воздух сомнет эти шары.

В 1709 году другой монах — Бартоломео Лоренцо Гусмао из Бразилии, бывшей тогда португальской колонией, — предложил просто наполнить шар теплым воздухом. С огромным трудом добрался он из Америки в Португалию и продемонстрировал полет. За это его обвинили в связях с нечистой силой, и монах был вынужден бежать.

Было только начало XVIII века, и наука тогда еще не приносила особых практических плодов; правда, картину мира меняла. А это не нравится многим даже в наши дни.

В 1783 году образованные братья Жозеф и Этьен Монгольфье из французского города Анноне изготовили и запустили шар, наполненный нагретым воздухом. Слухи о шаре быстро распространились, и Парижская академия наук поручила профессору Жаку Шарлю разобраться в изобретении братьев Монгольфье. Вместо этого тот сам разработал схему шара, сделанного из шелка, пропитанного каучуком и наполненного водородом, который в 1766 году открыл Кавендиш. Шар успешно взлетел, но, когда достиг разреженных слоев воздуха, раздулся и лопнул.

Братья же приехали в Париж и потрясли всех полетом своего шара, пассажирами которого были утка, петух и баран, а профессор Шарль более всего был удивлен тем, что шар братьев Монгольфье, получивший название «монгольфьер», наполнялся теплым воздухом. У монгольфьера были недостатки: воздух быстро остывал, а объем полости, хотя и был довольно велик, обеспечивал малую грузоподъемность.

А профессор Шарль сделал новый компактный и грузоподъемный шар на водороде, в котором были предусмотрены почти все современные детали: сетка, удерживающая его; гондола, регулировочные клапаны, балласт. Это стало прообразом аэростата (1783 г.).

Современные спортивные воздушные шары — монгольфьеры. С помощью современных горелок получилось наладить хорошее управление температурой воздуха, поэтому пилоту удается уверенно контролировать высоту полета. А так как направление ветров на разной высоте различное, аэронавты просто ловят попутный ветер и летят вдоль поверхности Земли в нужную им сторону, совершая даже кругосветные путешествия.

На принципе использования легкого газа построены и дирижабли, оболочка которых сделана из легкого металла. Они могут перевозить гигантские грузы, но не спеша. Из-за этого и из-за опасности возгорания в начале XX века они проиграли соревнование самолетам. Символом этого проигрыша стал фешенебельный немецкий дирижабль «Гинденбург», сгоревший в Нью-Йорке 6 мая 1937 года. Но теперь дирижабли имеют шанс вернуться, потому что появились новые материалы и можно обеспечить совсем другой уровень безопасности. Дирижабли не требуют сложной инфраструктуры и не наносят ущерба окружающей среде. К тому же люди осознали, что в перевозках регулярность порой важнее скорости, поскольку позволяет планировать свои действия.

Как летает самолет?

Всякий раз перед посадкой самолета в салоне можно услышать: «Ну как такая махина вообще взлетает?» Сам удивляюсь, хотя изучал механику сплошных сред.

Дело в том, что нас обманывает интуиция. Кажется, что самолет поднимает вверх напор встречного воздуха, а причина совсем в другом.

Загадка подъемной силы крыла самолета сначала была решена на практике. В 1876 году контр-адмиралом российского флота Александром Можайским была построена модель самолета — «летучка» — с тремя винтами, приводившимися в движение заведенной часовой пружиной. В 1903 году братья Уилбур и Орвилл Райт построили настоящий самолет с бензиновым двигателем, решив главную проблему — управление полетом, а в 1906 году русский профессор Николай Жуковский теоретически объяснил возникновение подъемной силы крыла и дал формулу ее расчета.

Подъемная сила крыла объясняется тем, что при движении самолета струи воздуха обтекают крыло и давление воздушной среды на него изменяется. На верхней стороне благодаря выпуклости крыла и наличию положительного угла атаки (наклону плоскости крыла по отношению к направлению движения самолета) воздух в струе движется с большей скоростью, чем на нижней, обычно плоской стороне. В результате давление воздуха на нижней стороне крыла оказывается больше, чем на верхней. Это и означает возникновение подъемной силы.

Если взять полоску бумаги и подуть вдоль нее сверху, то давление воздуха на верхней стороне снизится и полоска поднимется вверх. Так действует подъемная сила, такая же, как и на крыле самолета. И так же, как при обтекании крыла, вдоль верхней поверхности полоски воздух движется быстро, а под нижней практически замирает. От этого и возникает разность давлений.

При разбеге и полете самолет должен достичь определенной скорости, чтобы подъемная сила сравнялась с его весом.

Надо заметить, что разность давлений на сторонах крыла не так велика. Например, новейший аэробус А-380 при полной загрузке и заправке имеет вес не более 560 тонн, а площадь его крыльев чуть меньше 1700 м2. Поделив одно на другое, получаем, что для подъема этого гиганта средняя разность давлений на крыло должна быть всего 0,033 атмосферы, то есть 33 г/см2. Приблизительно такую же величину составляет нормальное давление в легких человека.

Самый маленький самолет в мире BD-5T имеет длину менее 4,5 м. Он стоит около 45 000 долларов, и его можно собрать из поставляемых деталей. Взлетный вес BD-5 равен 413 кг, а площадь крыльев составляет приблизительно 8 м2. Получается, что для его взлета достаточно перепада давлений между нижней и верхней поверхностью крыла всего 0,005 атмосферы. Это в семь раз меньше, чем для аэробуса, но ведь тот и весит в 1500 раз больше. Пожалуйста, сами решите, чему удивляться.

Изучая принципы полета, я наткнулся на самоучитель для вертолетчиков и прочел такую фразу: «В то же самое время вы должны использовать вашу другую руку на рычаге контроля, который находится прямо перед вами, чтобы переместить вертолет вперед, назад или в любую другую сторону, как будто вы управляете обычным самолетом».

Как мы видим?

Еще со школы мы все хорошо знаем: человек видит благодаря тому, что у него в глазу имеется сетчатка, состоящая из светочувствительных клеток — колбочек и палочек. Меняющий свою форму хрусталик проецирует отражаемый окружающими предметами свет на сетчатку и создает на ней изображение этих предметов. Весьма похоже на цифровой фотоаппарат с трансфокатором и светочувствительной полупроводниковой матрицей вместо сетчатки. Палочки и колбочки преобразуют свет в электрические сигналы, которые и передаются в мозг, запуская сложнейший процесс видения. Для этого мозг использует не только информацию, поступающую к нему в данный момент, но и накопленный ранее опыт. Собственно, то, что мы видим, — это основанная на предыдущем опыте интерпретация поступающих сигналов. В частности, этот опыт используется для управления движением глаз при рассматривании.

6
{"b":"542388","o":1}