Наблюдения показывают, что люди зевают, когда им не хватает впечатлений или когда они в состоянии стресса. Могут зевать студенты перед экзаменом, спортсмены перед выходом на старт, артисты и музыканты перед выходом на сцену. Зевок служит для снятия стресса как средство мобилизации.
Современная диагностическая техника позволила установить, что человек начинает зевать еще в утробе, с четвертого месяца. А там о дыхании еще и речь не идет. Но, по-видимому, стрессы и необходимость мобилизовываться бывают и у плода.
Казалось бы, теперь ясно, отчего люди зевают, однако у зевка обнаружились и другие свойства и функции. В частности, зевота, так же как и смех, заразительна. Если человек читает про зевоту, слышит о ней или, хуже того, видит, как другие зевают, то сам начинает зевать. Вероятно, и вам сейчас приходится нелегко. Заразительность зевания изучена достоверно. Таким образом, стало понятно, что зевок — это еще и некоторый мимический коммуникационный сигнал членов сообщества животных или людей о том, что ситуация стрессовая и необходимо мобилизоваться.
Гипотеза показалась интересной, и тогда был проделан такой опыт. Людей посадили в помещение и стали показывать фильм, в котором герои зевают. Естественно, это действовало на всех участников опыта. Стали следить за каждым из них и подсчитывать частоту зевков. Затем изучили психологические характеристики каждого. Выяснилось, что люди, которые менее заражались зевками, были более равнодушными к окружающим. Таким образом, получается, они продемонстрировали неспособность реагировать на сигналы, подаваемые членами социума.
Чтобы разглядеть мимические сигналы, требуется достаточно острое зрение. По одной из теорий именно благодаря остроте зрения многие животные, в частности обезьяны, широко используют мимику при коммуникациях, необходимых для ведения коллективной социальной жизни. Эти важные способности достались и человеку.
Как видим, иногда научный подход позволяет иначе взглянуть на привычные явления.
Почему мы устаем при ходьбе?
Отчасти мы устаем потому, что наши мышцы во время ходьбы выполняют физическую работу и тратят энергию. От этого в них накапливаются различные продукты обмена, в частности молочная кислота. Эта мышечная усталость очень зависит от нашей походки. Нам легко идти тогда, когда мы двигаем не только ногами, но и руками. С одной стороны, это важно для поддержания равновесия и дыхания, а с другой стороны, так сохранились древние стереотипы, ведь мы, Homo sapiens, стали двуногими прямоходящими из четвероногих.
Четвероногим животным, например лошадям, приходится довольно жестко синхронизировать движение конечностей. Возможных способов синхронизации всего три, отчего и основных аллюров у лошади тоже три: рысь, когда синхронно движутся две ноги, расположенные по диагонали; иноходь, когда синхронно выносятся и опускаются то правые, то левые ноги; и галоп, когда попеременно переносятся то передние, то задние ноги. Эта синхронизация, то есть фактически аллюры, прослеживается и в человеческих танцах. Удивительно, но теория такой синхронизации имеет много общего с теорией относительности, поскольку и там и там основные представления базируются на неевклидовой геометрии искривленных пространств, в которых параллельные прямые могут пересекаться.
Другая причина усталости заключается в том, что при прямохождении человек постоянно напрягает медленные статические мышцы спины и шеи, чтобы поддерживать тело и голову. От этого довольно легко устать. Вспомните, как нелегко выдержать долгую музейную экскурсию. Но и это еще не все. При ходьбе тяжесть тела переносится с одной ноги на другую, начиная с пятки. Это называется передним толчком. Он происходит за довольно короткое время, вследствие чего возникают большие ускорения, так как мы довольно тяжелые существа. Вместе с коллегами я измерял с помощью специально разработанного нами датчика — акселерометра — характеристики этого толчка, дошедшего до макушки. Мы были потрясены тем, какой оказалась эта величина — в два раза больше ускорения силы тяжести.
Получается, наше тело, позвоночник и хрящевые межпозвонковые диски все время испытывают ударную нагрузку. Она действует и на нервные отростки спинного мозга. От этого человек непроизвольно дополнительно напрягает мышцы спины и шеи, чтобы не только поддерживать тело и голову, но и защищать позвоночник и нервные корешки. Вот эти-то напряжения все вместе и ведут к усталости.
Удары при переднем толчке сильно ослабевают при ходьбе по мягкой поверхности, использовании мягкой обуви или хотя бы мягких стелек.
Теперь ясно, как не уставать при ходьбе. Во-первых, надо заниматься физкультурой, способствующей выработке правильной походки. Во-вторых, если приходится много ходить, надо подбирать удобную и мягкую обувь. Как видите, это вполне доступные вещи, о которых, вероятно, вы знали и раньше. Просто не нужно забывать.
Почему небо голубое?
Это классический детский вопрос, ответ на который известен точно, но его получение было сложным и заняло много времени. Существовала теория, что цвет неба совпадает с цветом воздуха или какого-либо газа, входящего в его состав. Исаак Ньютон первым понял, что если бы это было так, то белые Солнце, Луна и вершины снежных гор тоже виделись бы голубыми, как сквозь цветное стекло. Он доказал, что воздух не имеет цвета. Открыв разложение белого света на цветные составляющие, он успешно объяснил происхождение радуги разложением света на капельках воды. Его попытка похожим образом объяснить голубой цвет неба оказалась ошибочной.
В 1869 году англичанин Джон Тиндаль провел эксперимент и продемонстрировал, что если искусственно созданный туман осветить лучом белого света, то сбоку он будет смотреться голубым. Так стало ясно, что все дело в рассеянии света. Вообще-то достаточно было посмотреть и на голубой дымок от горящего конца сигары, сигареты или папиросы.
Действительно, с древних времен людям было известно, что луч света распространяется прямолинейно. Однако он всегда виден, если посмотреть на него сбоку. Но обычно луч так и кажется белым. Объяснение было найдено в 1871 году замечательным физиком лордом Рэлеем (Джон Стретт). Он рассчитал, что если свет рассеивается на крупных частицах, например на пылинках, размер которых существенно больше длины волны любой из составляющих белого света, то он так и остается белым. Например, так и будет, если размер пылинки сопоставим с одним микрометром. А вот если размер окажется гораздо меньше, то голубой и фиолетовый начнут рассеиваться гораздо сильнее красного. Значит, рассеянный свет, окрашивающий небо, будет голубым. Теория прекрасно объясняла, почему солнце на восходе и закате красное: все из-за того, что лучу приходится проходить более толстые слои воздуха, синий цвет рассеивается еще сильнее, а красный попадает в глаз напрямую. Вот только смущало, что небо голубое как раз в тех местах, где пыли нет. На чем же тогда рассеивается свет? Рэлей предположил, что на молекулах воздуха. В 1906 году опыты американского астрофизика Чарльза Эббота по рассеянию света позволили оценить концентрацию молекул в воздухе, и она прекрасно совпала с уже известной из совсем других опытов. Однако радость продолжалась недолго. В 1907 году русский профессор физики Леонид Мандельштам, которому было всего 28 лет, обратил внимание, что теория Рэлея работает, если число молекул в единице объема воздуха достаточно мало, а в реальной атмосфере это не так. Голубой цвет неба снова стал необъяснимым, пока Мандельштам не понял: все дело в том, что воздух никогда не бывает однородным. Всегда вследствие случайных тепловых движений молекул в очень малых объемах воздуха образуются случайные изменения плотности. Вот поэтому-то и происходит рассеяние, придающее небу голубой цвет.
Все хорошо, и можно бы успокоиться. Но эти случайные флуктуации по расчету должны приводить к очень малому, трудно измеримому мерцанию неба. Опыт, который позволил бы доказать, что так и должно быть, Мандельштам вместе со своим коллегой Григорием Ландсбергом смог подготовить лишь через 18 лет. Это оказался очень тонкий, добросовестный опыт, в результате которого было открыто совершенно новое явление, получившее название комбинационного рассеяния. Оно на многие годы определило развитие оптики и в конце концов повлияло на открытие лазеров. Но это уже другой разговор. Важно то, что сильный научный результат не только отвечает на поставленные вопросы, но и обязательно рождает новые, еще более трудные и интересные.