{–}
{ Get a Number }
function GetNum: integer;
begin
if not IsDigit(Look) then Expected('Integer');
GetNum := Ord(Look) – Ord('0');
GetChar;
end;
{–}
Затем напишите следующую версию Expression:
{–}
{ Parse and Translate an Expression }
function Expression: integer;
begin
Expression := GetNum;
end;
{–}
И, наконец, вставьте
Writeln(Expression);
в конец основной программы. Теперь откомпилируйте и протестируйте.
Все, что эта программа делает – это «анализ» и трансляция «выражения», состоящего из одиночного целого числа. Как обычно, вы должны удостовериться, что она обрабатывает числа от 0 до 9 и выдает сообщение об ошибке для чего-либо другого. Это не должно занять у вас много времени!
Теперь давайте расширим ее, включив поддержку операций сложения. Измените Expression так:
{–}
{ Parse and Translate an Expression }
function Expression: integer;
var Value: integer;
begin
if IsAddop(Look) then
Value := 0
else
Value := GetNum;
while IsAddop(Look) do begin
case Look of
'+': begin
Match('+');
Value := Value + GetNum;
end;
'-': begin
Match('-');
Value := Value – GetNum;
end;
end;
end;
Expression := Value;
end;
{–}
Структура Expression, конечно, схожа с тем, что мы делали ранее, так что мы не будем иметь слишком много проблем при ее отладке. Тем не менее это была серьезная разработка, не так ли? Процедуры Add и Subtract исчезли! Причина в том, что для выполнения необходимых действий нужны оба аргумента операции. Я мог бы сохранить эти процедуры и передавать в них значение выражения на данный момент, содержащееся в Value. Но мне показалось более правильным оставить Value как строго локальную переменную, что означает, что код для Add и Subtract должен быть помещен вместе. Этот результат наводит на мысль, что хотя разработанная нами структура была хорошей и проверенной для нашей бесхитростной схемы трансляции, она возможно не могла бы использоваться с ленивой оценкой. Эту небольшую интересную новость нам возможно необходимо иметь в виду в будущем.
Итак, транслятор работает? Тогда давайте сделаем следующий шаг. Несложно понять, что процедура Term должна выглядеть также. Замените каждый вызов GetNum в функции Expression на вызов Term и затем наберите следующую версию Term:
{–}
{ Parse and Translate a Math Term }
function Term: integer;
var Value: integer;
begin
Value := GetNum;
while Look in ['*', '/'] do begin
case Look of
'*': begin
Match('*');
Value := Value * GetNum;
end;
'/': begin
Match('/');
Value := Value div GetNum;
end;
end;
end;
Term := Value;
end;
{–}
Теперь испробуйте. Не забудьте двух вещей: во-первых мы имеем дело с целочисленным делением, поэтому, например, 1/3 выдаст ноль. Во-вторых, даже если мы можем получать на выходе многозначные числа, входные числа все еще ограничены одиночной цифрой.
Сейчас это выглядит как глупое ограничение, так как мы уже видели как легко может быть расширена функция GetNum. Так что давайте исправим ее прямо сейчас. Вот новая версия:
{–}
{ Get a Number }
function GetNum: integer;
var Value: integer;
begin
Value := 0;
if not IsDigit(Look) then Expected('Integer');
while IsDigit(Look) do begin
Value := 10 * Value + Ord(Look) – Ord('0');
GetChar;
end;
GetNum := Value;
end;
{–}
Если вы откомпилировали и протестировали эту версию интерпретатора, следующим шагом должна быть установка функции Factor, поддерживающей выражения в скобках. Мы задержимся немного дольше на именах переменных. Сначала измените ссылку на GetNum в функции Term, чтобы вместо нее вызывалась функция Factor. Теперь наберите следующую версию Factor:
{–}
{ Parse and Translate a Math Factor }
function Expression: integer; Forward;
function Factor: integer;
begin
if Look = '(' then begin
Match('(');
Factor := Expression;
Match(')');
end
else
Factor := GetNum;
end;
{–}
Это было довольно легко, а? Мы быстро пришли к полезному интерпретатору.
Немного философии
Прежде чем двинуться дальше, я бы хотел обратить ваше внимание на кое-что. Я говорю о концепции, которую мы использовали на всех этих уроках, но которую я явно не упомянул до сих пор. Я думаю, что пришло время сделать это, так как эта концепция настолько полезная и настолько мощная, что она стирает все различия между тривиально простым синтаксическим анализатором и тем, который слишком сложен для того, чтобы иметь с ним дело.
В ранние дни технологии компиляции люди тратили ужасно много времени на выяснение того, как работать с такими вещами как приоритет операторов… способа, который определяет приоритет операторов умножения и деления над сложением и вычитанием и т.п. Я помню одного своего коллегу лет тридцать назад и как возбужденно он выяснял как это делается. Используемый им метод предусматривал создание двух стеков, в которые вы помещали оператор или операнд. С каждым оператором был связан уровень приоритета и правила требовали, чтобы вы фактически выполняли операцию («уменьшающую» стек) если уровень приоритета на вершине стека был корректным. Чтобы сделать жизнь более интересной оператор типа ")" имел различные приоритеты в зависимости от того, был он уже в стеке или нет. Вы должны были дать ему одно значение перед тем как поместите в стек и другое, когда решите извлечь из стека. Просто для эксперимента я самостоятельно поработал со всем этим несколько лет назад и могу сказать вам, что это очень сложно.
Мы не делали что-либо подобное. Фактически, к настоящему времени синтаксический анализ арифметических выражений должен походить на детскую игру. Как мы оказались настолько удачными? И куда делся стек приоритетов?
Подобная вещь происходит в нашем интерпретаторе выше. Вы просто знаете, что для того, чтобы выполнить вычисления арифметических выражений (в противоположность их анализу), должны иметься числа, помещенные в стек. Но где стек?
Наконец, в учебниках по компиляторам имеются разделы, где обсуждены стеки и другие структуры. В другом передовом методе синтаксического анализа (LR) используется явный стек. Фактически этот метод очень похож на старый способ вычисления арифметических выражений. Другая концепция – это синтаксическое дерево. Авторы любят рисовать диаграммы из токенов в выражении объединенные в дерево с операторами во внутренних узлах. И снова, где в нашем методе деревья и стеки? Мы не видели ничего такого. Во всех случаях ответ в том, что эти структуры не явные а неявные. В любом машинном языке имеется стек, используемый каждый раз, когда вы вызываете подпрограмму. Каждый раз, когда вызывается подпрограмма, адрес возврата помещается в стек ЦПУ. В конце подпрограммы адрес выталкивается из стека и управление передается на этот адрес. В рекурсивном языке, таком как Pascal, могут также иметься локальные данные, помещенные в стек, и они также возвращаются когда это необходимо.
Например функция Expression содержит локальный параметр, названный Value, которому присваивается значение при вызове Term. Предположим, при следующем вызове Term для второго аргумента, что Term вызывает Factor, который рекурсивно вызывает Expression снова. Этот «экземпляр» Expression получает другое значение для его копии Value. Что случится с первым значением Value? Ответ: он все еще в стеке и будет здесь снова, когда мы возвратимся из нашей последовательности вызовов.
Другими словами, причина, по которой это выглядит так просто в том, что мы максимально использовали ресурсы языка. Уровни иерархии и синтаксические деревья присутствуют здесь, все правильно, но они скрыты внутри структуры синтаксического анализатора и о них заботится порядок в котором вызываются различные процедуры. Теперь, когда вы увидели, как мы делаем это, возможно трудно будет придумать как сделать это каким-либо другим способом. Но я могу сказать вам, что это заняло много лет для создателей компиляторов. Первые компиляторы были слишком сложными. Забавно, как работа становится легче с небольшой практикой.