Литмир - Электронная Библиотека
Содержание  
A
A

По нашей же модели «привязки» скорости света – здесь всё прозрачно для понимания. Если атом-источник движется относительно локального участка частотного склона, т.е. имеет ненулевую локально-абсолютную скорость, то каждая последующая «поисковая волна» будет расходиться из нового центра, так что длина волны, идущей по ходу движения источника, будет уменьшена, и наоборот – в согласии с выражением для линейного эффекта Допплера. Аналогично, атом-получатель, из-за своего движения, также будет воспринимать изменённой длину «поисковой волны». Подчеркнём, что наличие линейных допплеровских сдвигов длин «поисковых волн» отнюдь не означает, что это отразится на величинах передаваемых квантов энергии. Прямые доказательства изменения энергии кванта света из-за движения атома-источника или атома-приёмника – отсутствуют. И если допустить, что этого изменения энергии действительно нет, то для нас сразу проясняется вопрос о том, каким же образом соблюдается закон сохранения энергии при квантовой передаче, сопровождаемой линейным эффектом Допплера. Традиционно, соблюдение этого закона здесь пытаются объяснить с учётом эффекта отдачи при излучении и поглощении фотона. Но это объяснение – из разряда противоречивых, поскольку отдача имела бы место даже у покоящегося атома-источника, когда допплеровского сдвига на нём нет! Проблема устраняется, если допустить, что линейные допплеровские сдвиги испытывают лишь длины «поисковых волн», и это не отражается на энергиях квантов света.

Добавим, что имеют место годичные вариации положений спектральных линий звёзд – в соответствии с орбитальным движением Земли вокруг Солнца [С2]. Мы объясняем это тем, что «поисковые волны» приобретают сдвиги, эквивалентные допплеровским, при пересечении «подвижной» границы раздела двух различных областей «инерциальной привязки»: длина волны изменяется при входе в частотную воронку Солнца, а затем – при входе в частотную воронку Земли. Но наблюдаемый цвет звезды при этом не должен изменяться. Так ли это в действительности – однозначный ответ нам неизвестен. Ситуация осложняется тем, что сдвиги спектральных линий звёзд могут иметь не только допплеровское происхождение [Г12].

Заметим, что из «привязки скорости света» к местному участку частотного склона немедленно следует независимость скорости света от характера движения источника – хорошо известное явление, которое у Эйнштейна не объясняется, а лишь постулируется (второй постулат СТО). Здесь, конечно, подразумевается скорость света «в один конец» - в частности, света, идущего от двойных звёзд к земному наблюдателю. Видимое обращение двойных звёзд отличалось бы от кеплеровского, если бы свет от приближавшейся к нам звезды двигался быстрее, чем от удалявшейся.

Добавим, что, благодаря орбитальному движению планетарных частотных воронок, возможно наблюдать такой феномен, как полное увлечение света планетарным «инерциальным пространством» - если пустить световой импульс так, чтобы он прошёл планетарную воронку насквозь, параллельно вектору её орбитальной скорости. Двигаясь по межпланетному пространству до влёта в планетарную частотную воронку и после вылета из неё, световой импульс имел бы скорость c по отношению к солнечному частотному склону. В пределах же планетарной частотной воронки, он имел бы скорость c по отношению к ней самой – а она, в свою очередь, движется относительно солнечного частотного склона с орбитальной скоростью. Тогда полётное время светового импульса, проходящего сквозь планетарную частотную воронку по ходу её орбитального движения, было бы меньше полётного времени импульса, проходящего по тому же самому пути в обратном направлении. Например, для случая земной частотной воронки, имеющей радиус R≈900000 км, полётные времена световых импульсов, которыми обменивались бы космические корабли, находящиеся за её пределами, могли бы различаться на величину ~4RVorb/c2, где Vorb=30 км/с, т.е. примерно на одну миллисекунду.

Как можно видеть, эйнштейновская процедура синхронизации часов с помощью световых импульсов, движущихся «туда и обратно», могла бы, теоретически, быть корректна лишь в пределах одной и той же области «инерциального пространства» - например, в области планетарного тяготения. Ведь при пересечении светом границы этой области, переключается «привязка» его скорости, и пролётные времена «туда» и «обратно» перестают быть равными.

Уместно добавить, что ситуация совершенно аналогична и для случая радиоволн, «привязка» скорости которых организована по тем же принципам, как и для скорости света. Мало кто знает, что, на XVII Генеральной конференции по мерам и весам в 1983 г., константе c, т.е. «скорости плоской электромагнитной волны в вакууме», было приписано значение с нулевой погрешностью: c=299792458 м/с [Д3]. Это понадобилось для того, чтобы без ущерба перенести точность частотных измерений на измерения длин, и, таким образом, реализовать «пролётное определение метра»: это расстояние, проходимое плоской электромагнитной волной в вакууме за время, равное 1/299792458 секунды. На этом «пролётном определении метра» и основана работа спутниковых навигационных систем – в частности, GPS. Но, из вышеназванных особенностей «привязки» скорости радиоизлучения следует, что корректное создание «навигационного поля» по принципам, реализуемым в GPS, возможно в пределах лишь одной и той же области тяготения – например, в пределах земной частотной воронки – когда используемые радиоимпульсы не пересекают её границ.

3.9. Как Эддингтон изображал искривление лучей света тяготением Солнца.

Традиционные представления о свете, как о летящих фотонах, подразумевают, что фотоны являются полноценными частицами, которые подвержены действию тяготения. Т.е., фотон, пролетающий вблизи массивного тела, должен искривлять свою траекторию из-за гравитационного притяжения к «силовому центру». Эйнштейн утверждал, что, помимо этого гравитационного притяжения, существует ещё один механизм, дополнительно искривляющий траекторию пролетающего фотона (см., например, [Э1]). Согласно общей теории относительности (ОТО), по мере приближения к «гравитирующему телу», замедляется темп течения времени, и, соответственно, уменьшается скорость света. А известно, что градиент скорости света вызывает рефракцию, т.е. искривление траектории света в ту сторону, где его скорость меньше. Предсказанная величина поворота траектории фотона из-за этой «гравитационной рефракции» оказалась такая же, как и из-за чисто гравитационного притяжения фотона, т.е. теория Эйнштейна предсказывала удвоенное искривление луча, по сравнению с классическими предсказаниями. Если на опыте обнаружился бы удвоенный эффект – это подтвердило бы общую теорию относительности.

Такие опыты были проведены; но прежде чем о них говорить, изложим предварительные соображения, следующие из наших представлений о свете. Во-первых, фотонов, в традиционном понимании, не существует: кванты световой энергии перебрасываются непосредственно с атома на атом, не проходя по разделяющему атомы пространству (3.4). Раз нет летящих фотонов, то нет и гравитационного воздействия на них. Направление продвижения кванта света определяется только Навигатором (3.4), в работу которого тяготение не вмешивается. Во-вторых, сегодня можно считать твёрдо установленным, что имеют место гравитационные сдвиги квантовых уровней энергии в веществе, но они обусловлены отнюдь не «гравитационным замедлением времени» - которого не существует в природе (1.14), а, значит, не существует и зависимости скорости света от гравитационного потенциала, которая вызывала бы «гравитационную рефракцию». Таким образом, мы не усматриваем причин ни для действия тяготения на сам свет, ни для «гравитационной рефракции».

Но нас уверяют, что астрономам удалось обнаружить искривления лучей света от звёзд, проходившего вблизи Солнца – в согласии с предсказаниями ОТО! Оказалось, что эти уверения гроша ломаного не стоят. Астрономы, действительно, развернули бурную деятельность – но при этом они упорно выдавали желаемое за действительное.

49
{"b":"284894","o":1}