Литмир - Электронная Библиотека
Содержание  
A
A

При таких делах, почему же мы уверены в том, что в шахтах подтверждается не закон всемирного тяготения, а наша модель? Да повезло, знаете. Авторы статьи [С6], проводившие измерения в шахтах Квинсленда (Австралия), опубликовали-таки «сырые» данные (Табл.1, колонка 3). Причём, чётко указали, что представлены значения, измеренные на глубине, минус значение, измеренное на поверхности – откуда сразу ясно, что ускорение свободного падения увеличивается при погружении, а не уменьшается, как требует закон всемирного тяготения. Более того! Обратите внимание: согласно этому закону, модуль производной у высотной зависимости ускорения свободного падения при подходе к точке излома сверху, 2GMЗ/R3, в два раза больше чем при подходе к точке излома снизу, GMЗ/R3. При задействованном перепаде глубин Δh=948.16 м [С6], расчётная величина приращения ускорения свободного падения 2GMЗΔh/R3, т.е. при надповерхностном значении производной, составляет ≈2.96·10-3 м/с2. Сравните с ней измеренное значение для названного перепада глубин: 2.9274·10-3 м/с2 [С6]. Совершенно очевидно: при переходе через поверхность Земли сверху вниз, не имеет место не только смена знака, но и двукратное уменьшение модуля производной у высотной зависимости ускорения свободного падения. Такое возможно, если всё вещество Земли не обладает притягивающим действием! Мы обнаруживаем здесь, прямо скажем, глобальный прокол закона всемирного тяготения – наша же модель подтверждается и качественно, и количественно.

Знаете, один писатель, приближённый к военным кругам, красочно описывал, как наши атомные подводные лодки легко отрывались от американских, закладывая лихие виражи между подводных гор Срединно-Атлантического хребта. Это, якобы, потому, что на наших лодках были гравитационные детекторы подводных гор, а у американцев такой прелести не было. Ну, ну. Знал бы этот писатель о положении дел в гравиразведке полезных ископаемых. Практикам-то известно, что, несмотря на хорошо разработанную теорию, эффективность гравиразведки является наихудшей по сравнению с эффективностями других методик – например, сейсмической или электромагнитной. Показания гравиметров и вариометров (приборов на основе крутильных весов) лишь в ничтожном проценте случаев отражают истинную картину залегания тех или иных пород. И эти редкие случаи происходят просто потому, что если прибор указывает направление совершенно случайно, то рано или поздно он укажет его правильно. Неужто нашёлся бы капитан подводной лодки, который доверял бы подобным приборам? Или, пардон, на подводных лодках гравитационные детекторы – какие-то особенные? Основанные на том, что «в боевой обстановке значение синуса может приближаться к четырём»!

Эх, а ведь до сих пор разные организации предлагают простакам услуги по гравиметрической разведке. Разведка пешая! Автомобильная! С борта самолёта! Со спутников! «Любые фантазии клиентов – за их денежки!» Причём, ведь гравиметрические карты рисуют – разноцветные! Ну, что тут скажешь. Во-первых, красиво. А, во-вторых, кому эти картинки мешают?

2.5. Где же притягивающее действие у малых тел Солнечной системы?

В Солнечной системе собственное тяготение с полной очевидностью имеется у Солнца, планет и Луны; а также, если судить по наличию атмосферы, у Титана. Что касается остальных спутников планет, то мы обнаруживаем следующее.

Во-первых, даже в случаях самых крупных спутников (в том числе и Титана) не обнаружена динамическая реакция их планет – которые, в согласии с законом всемирного тяготения, должны обращаться вокруг общего со спутником центра масс.

Во-вторых, о тяготении спутников планет свидетельствовало бы наличие у них атмосфер. Но, за исключением Титана, явных признаков атмосфер ни у кого из них не обнаружено.

В-третьих, ни у кого из шести десятков известных на сегодня спутников планет не обнаружено ни одного собственного спутничка. В свете теории вероятностей, такое положение вещей выглядит довольно-таки странным.

В-четвёртых, особого упоминания заслуживают т.н. динамические определения масс спутников, основанные на аксиоме о том, что спутники одной планеты непременно возмущают движение друг друга. Если в действительности спутники не притягивают друг друга, то динамические определения их масс являются попытками решения некорректно поставленной задачи. И признаки этого – действительно налицо: результаты применения этой методики оказываются расплывчатыми и неоднозначными. Вот комментарии определения де Ситтером масс четвёрки крупных спутников Юпитера, на основе полученного им периодического решения: «Фактические орбиты спутников не соответствуют в точности периодическому решению, но могут быть получены из периодического решения вариацией координат и компонент скорости…», и далее: «…трудностью является медленная сходимость аналитического разложения по степеням масс» [М2]. Тем не менее, значения масс, «данные де Ситтером, следует считать наилучшими… Всякое уточнение этих значений потребовало бы построения новой теории, …потребовался бы также новый ряд наблюдений положений этих спутников» [Д1]. Выбранные здесь «наиболее вероятные» значения масс спутников – из набора не повторяющихся значений – едва ли могут служить доказательством того, что спутники действительно притягивают друг друга. Скорее, мы имеем свидетельство о том, что притягивающего действия у них как раз нет.

Такое положение с собственным тяготением у спутников планет является тревожным, поэтому нас пытаются убедить в том, что признаки собственного тяготения имеются хотя бы у астероидов. «Смотрите, - показывали нам фотографии, - на поверхности астероида лежат валуны!» Но мы присматривались и обнаруживали, что эти валуны не «лежат» на поверхности, они вплавлены в неё. «Смотрите, - показывали нам другие фотографии, - на поверхности астероида видны озёра пыли!» Но пыль – если там действительно пыль – может держаться, например, на электростатике… Вот если у астероида обнаружился бы обращающийся вокруг него спутничек – это было бы похоже на доказательство наличия у астероида собственного тяготения.

Ой, до чего же исследователям хотелось обнаружить такие спутнички! Для их визуального обнаружения, у наземных оптических телескопов было недостаточно хороша разрешающая сила, поэтому приходилось выкручиваться. Отыщут астероид с переменным блеском и заявят: это из-за того, что спутничек его периодически затмевает. Да нет, говорят им, это один астероид, просто он вращается и блестит то тёмной, то светлой гранями. Тогда отыщут астероид с двойной периодичностью кривой блеска: уж тут-то точно спутничек затмевает! Да нет, говорят им, это опять один астероид, только с асимметричной формой – например, с выростом – и он испытывает два вращения сразу. Тогда предъявят радио-изображения тесной парочки: допплеровские сдвиги свидетельствуют о её вращении около общего центра [П1]! Да нет, говорят им, это опять вращается один астероид, с перемычкой – радио-изображения и допплеровские сдвиги будут такие же.

Неизвестно, сколько бы ещё длилась эта сказка про белого бычка, если бы не дальний космический зонд ГАЛИЛЕО. 28 августа 1993 года, пролетая рядом с астероидом Ида, этот зонд сделал серию его снимков, которые затем передал по радиоканалу на Землю. Оказалось, что на этих снимках запечатлён небольшой объект рядом с Идой; его назвали Дактилем.

Если бы этот фотосеанс длился достаточно долго для того, чтобы зафиксировать обращение Дактиля вокруг Иды, то открытие спутника у астероида не вызывало бы сомнений. Но, увы, за короткое время пролёта зонда взаимное положение Иды и Дактиля, практически, не изменилось. При том, что масса Иды не была известна, реконструкция орбиты Дактиля, на основе закона всемирного тяготения, допускала весьма значительную неопределённость. Это не мы придумали, это они сами пишут: «Почти сразу стало ясно, что массу/плотность Иды не получить вместе с определением орбиты Дактиля. Вместо этого, был сконструирован набор его орбит – для различных возможных значений массы/плотности Иды, от 1.5 до 4.0 г/см3. Для различных значений плотности различны и орбиты, причём, для названного диапазона плотностей, орбиты различаются очень сильно. При плотностях Иды, меньших примерно 2.1 г/см3, орбиты оказываются всего лишь гиперболическими. При больших плотностях Иды орбиты являются эллиптическими с огромными удалениями в апоцентрах, с удалениями в перицентрах примерно 80-85 км, и с периодами, различающимися от примерно одних суток до многих десятков суток. При плотности примерно 2.8 г/см3, орбита почти круговая… с периодом около 27 часов. Для ещё больших плотностей, эллиптические орбиты имеют удаления в апоцентрах 95-100 км, а удаления в перицентрах уменьшаются с увеличением плотности. Для плотности Иды более чем 2.9 г/см3, удаление в перицентре меньше 75 км и период меньше 24 часов…» [ВЕБ1] (перевод наш).

21
{"b":"284894","o":1}