Но ведь на сегодня, за внешний край пояса Койпера вылетели четыре дальних космических зонда: «Пионеры-10,11» и «Вояджеры-1,2»! Полёт каждого из них плотно контролировался средствами дальней космической связи – и, значит, имелись четыре блестящие возможности получить прямой ответ на вопрос о том, является ли внешний край пояса Койпера границей солнечного тяготения!
Главный пограничный эффект заключался бы в том, что, пока зонд двигался в области солнечного тяготения, его гелиоцентрическая скорость уменьшалась бы из-за наличия ускорения к Солнцу, а после пересечения им границы это уменьшение гелиоцентрической скорости прекратилось бы. Судя по отсутствию официальных сообщений о таком эффекте, он и не имел места. Однако, именно этот эффект мы выявили при анализе траекторных данных, которые находились в свободном доступе на официальном сайте NASA [ВЕБ16]. Разумеется, точные траекторные данные – это важная научная тайна, поэтому в свободном доступе находились грубые данные. Они были округлены в достаточной, по мнению специалистов из NASA, степени – чтобы их прямое использование не дало ничего, заслуживающего внимания. Тем не менее, мы нашли способ обработки этих данных, на два порядка повышающий точность представления гелиоцентрической дальности зонда [Г9]. По уточнённым данным мы находили уточнённую гелиоцентрическую скорость зонда – её результирующие значения, на интервале дальностей 30-70 а.е., приведены на Рис.2.11 для случая «Вояждера-2» [Г9].
На первый взгляд может показаться, что разбиение изображённого на диаграмме массива точек на две части, с переломом в области 49 а.е., выглядит искусственно. Но заметим, что характер разброса точек принципиально изменяется при переходе через область 49 а.е. А именно: при дальностях до 49 а.е, разброс точек неупорядочен, а далее он приобретает ярко выраженную упорядоченность, в которой отчётливо просматриваются две обособленные последовательности скачков. Так и должно быть, если разброс точек обусловлен, главным образом, грубостью использованных значений гелиоцентрических широт и долгот, и если скорость на дальностях до 49 а.е. уменьшалась, а далее она оставалась постоянной. О таком поведении скорости свидетельствуют и два линейных тренда, построенные для двух участков разбиения массива. Причём, крутизна первого тренда соответствует, на участке 47-49 а.е., величине ускорения 2.8·10-6 м/с2, которая мало отличается от величины ускорения свободного падения к Солнцу на дальности 48 а.е. – 2.6·10-6 м/с2. Такое согласие также свидетельствует о том, что наш анализ данных о траектории «Вояджера-2» не содержит грубых ошибок.
Рис.2.11
Едва ли можно сомневаться в том, что не мы первые обнаружили исчезновение ускорения свободного падения к Солнцу у космических аппаратов, вылетавших за внешний край пояса Койпера. Подобный феномен был бы немедленно выявлен группой слежения за полётом. Но специалисты, работавшие с «Пионерами» и «Вояджерами», не сообщили об этих феноменах, а также о скачках допплеровского сдвига несущей при радиосвязи с аппаратами – на их выходе за внешний край пояса Койпера. А ведь знание величин этих скачков, при известных векторах выхода четырёх аппаратов из Солнечной системы, дало бы возможность определить вектор скорости Солнечной системы в Галактике. Такое определение – более быстрое и точное по сравнению с методами, основанными на наблюдениях вековых движений звёзд – стало бы научной сенсацией.
Но, увы, официальная наука в очередной раз умолчала о фактах, которые не уложились в концепцию «всемирного тяготения». Весьма показательна и реакция хозяев использованных нами траекторных данных. Не прошло и двух суток с момента публикации статьи [Г9] и размещения анонсов о ней на форумах в Интернете, как на сайте NASA [ВЕБ16] закрыли свободный доступ к этим траекторным данным, которые до того пылились там лет пятнадцать. Значит, было отчего задёргаться!
Но это ещё не всё. Специалисты, рулившие «Пионерами» и «Вояджерами», ранее выдали статью [А2] о необъяснённом аномальном ускорении «Пионеров» к Солнцу – причём, величина этой «аномалии» на четыре порядка меньше, чем скачкообразное обнуление ускорения на границе пояса Койпера, о котором они умолчали. Эту статью [А2] широко разрекламировали. Толпы энтузиастов кинулись наперебой выдвигать самые фантастические гипотезы для объяснения «аномалии «Пионеров». Сильна была их уверенность в том, что они искали объяснения для реального физического эффекта.
Но от этой уверенности ничего не остаётся, если внимательно посмотреть на приведённый авторами график (доступный также на [ВЕБ29]). Он иллюстрирует остаточные разности допплеровской скорости (измеряемой минус предсказываемой) для «Пионера-10» на семилетнем интервале. Заметно, что на систематический линейный рост этих остаточных разностей - на основе которого и сделали вывод об «аномальном ускорении» - наложена слабая раскачивающаяся волна с периодом в один год. Едва ли можно серьёзно говорить о том, что космический аппарат, движущийся где-то на периферии Солнечной системы, имеет годичную, да ещё раскачивающуюся, модуляцию своей скорости. Между тем, известно, что при машинной обработке потоков данных, имеющих периодические составляющие, появление такого рода «раскачек» при определённых параметрах фильтрации – обычное дело. Едва ли можно сомневаться в том, что названная годичная волна на графике не соответствует реальному физическому эффекту, а является «эффектом обработки». И если фильтрация при обработке данных допускает «пролезание» периодической паразитной компоненты, то «пролезание» линейной паразитной компоненты она должна допускать тем более. Было бы странно, если линейная паразитная компонента при этом отсутствовала бы!
Добавим, что мы усматриваем важное косвенное свидетельство о том, что заявленное «аномальное ускорение аппаратов к Солнцу» является не реальным физическим эффектом, а «эффектом обработки». Речь о том, что для аппаратов разных конструкций (Пионер-10 и -11, Галилео, Улисс) «аномальное ускорение» оказалось практически одинаковым в огромном диапазоне расстояний от Солнца - от 1.3 до 67 а.е. [А2]! Самым простым объяснением такого чуда является допущение об одинаковом паразитном эффекте, имевшем место при обработке различных сегментов данных – одной и той же программой [А2]. И неспроста авторы [А2], которые могли представить график на 20-летнем интервале, ограничились семилетним интервалом. Одним годом больше – и раскачивающаяся годичная волна уже бросалась бы в глаза всем.
Создаётся стойкое впечатление, что главной целью публикации [А2] было внушение научному сообществу ложной уверенности в том, что, с точностью до ~10-8 см/с2, солнечное тяготение действует в полном согласии с законом всемирного тяготения – на дальностях вплоть до 60 а.е. и более. Чтобы никто даже не заподозрил, что область солнечного тяготения имеет чёткую границу!
2.12. Малость радиуса действия тяготения Луны.
Согласно закону всемирного тяготения, тяготение Луны действует вплоть до границ Вселенной. Но самыми значимыми его проявлениями считаются, во-первых, динамическая реакция Земли на Луну, т.е. обращение Земли, в противофазе с обращением Луны, около их общего центра масс, и, во-вторых, лунные приливы в океанах. Однако, правда заключается в том, что тяготение Луны действует лишь в небольшой окололунной области, примерно до 10000 км от лунной поверхности – и, таким образом, оно даже до Земли далеко не достаёт. Поэтому пара Земля-Луна движется весьма своеобразно (2.14), ведь земное тяготение на Луну действует, а лунное тяготение на Землю – нет (2.13). И океанские приливы порождаются отнюдь не тяготением Луны (2.15).
Интересно, что тяготение Луны организовано не по принципу планетарного тяготения. Если Луна имела бы собственную частотную воронку, то, при радиолокации Луны узкополосным сигналом, отсутствовал бы вклад в эффект Допплера (1.9), соответствующий изменению геоцентрического расстояния до Луны из-за того, что её орбита не является круговой. В действительности же этот вклад имеет место [Б2]. Кстати, опять же: аномально организованное тяготение Луны порождается отнюдь не её веществом. Дело в том, что имеются убийственные свидетельства о том, что Луна представляет собой не сплошное тело, а тонкостенную оболочку – например, по результатам работы сейсмодатчиков на поверхности Луны. Сейсмические события, на которые реагировали эти сейсмодатчики, вызывали и искусственно, для чего на Луну направляли отработанные разгонные ступени ракет. Поразительным было то, что «лунотрясения» длились невероятно долго. Так, после удара о поверхность Луны третьей ступени ракеты Сатурн, использованной для разгона корабля Аполлон-13, «звон» «детектировался в течение более четырёх часов. На Земле, при ударе ракеты на эквивалентном удалении, сигнал длился бы всего несколько минут» [Л6] (перевод наш). Сейсмические колебания с такой высокой добротностью нетипичны для сплошного тела, и, наоборот, они характерны для полого резонатора.