Литмир - Электронная Библиотека
Содержание  
A
A

Согласно этой логике, свет от далёкой звезды, прошедший сквозь границу области земного тяготения, «игнорирует» тот факт, что эта область движется по межпланетному пространству. Свет движется по этой области со скоростью c – причём, направление движения определяется простым правилом: свет продолжает двигаться в том направлении, в котором он пересёк границу. А это направление, т.е. угол влёта, определяется классической комбинацией вектора орбитальной скорости области земного тяготения и вектора скорости света на подлёте к границе. В частном случае, когда эти векторы ортогональны, отношение их модулей даёт тангенс угла годичной аберрации – одной из фундаментальных констант в астрономии.

Таким образом, феномен годичной аберрации находит элементарное объяснение как пограничный эффект, происходящий при переходе светом от звёзд границы области земного тяготения – с переключением вектора скорости света на новую локально-абсолютную привязку. Единым махом объясняются особенности годичной аберрации, которые до сих пор не удалось объяснить на основе концепции относительных скоростей. Во-первых, это одинаковость больших полуосей эллипсов годичной аберрации для всех звёзд, независимо от их других собственных движений по небесной сфере. Во-вторых, это результат проверки того, не происходит ли аберрационный «излом» движения света на телескопе, с помощью которого ведутся наблюдения. Для этой проверки Эйри заполнил телескоп водой. Скорость света в воде примерно в полтора раза меньше, чем в воздухе. Если бы «излом» происходил на телескопе, то отношение скорости движения телескопа к скорости света в нём дало бы в полтора раза больший аберрационный эффект. Однако, эффект остался прежним – значит, в телескоп попадает свет, уже испытавший аберрационное отклонение где-то выше. Наконец, в-третьих, это своеобразная селективность действия феномена: годичная аберрация наблюдается для объектов, находящихся за пределами области земного тяготения – но не наблюдается для объектов, находящихся внутри этой области, например, для Луны и искусственных спутников Земли.

Как можно видеть, вновь выглядит предпочтительнее логика «цифрового» мира – в котором есть место для «эфира». Следует только не забывать, что «эфир», о котором говорим мы, это реальность не физическая, а надфизическая: это программные предписания. Поэтому, при движении планетарного «эфира» сквозь межпланетный «эфир», не возникает проблем ни по линии гидродинамики, ни по линии наложения этих «эфиров» друг на друга. Программные предписания таковы, что планетарный и межпланетный «эфиры», так сказать, не смешиваются, а граница между ними сохраняет первозданную резкость.

1.12. Квадратичный эффект Допплера в модели локально-абсолютных скоростей.

Согласно СТО, величина квадратичного эффекта Допплера есть

Этот «цифровой» физический мир (СИ) - id59712_expr1_12_1.png

где f - частота излучения, V - скорость излучателя в системе отсчёта приёмника. Этот эффект ещё называют поперечным эффектом Допплера, поскольку он имеет место даже при движении излучателя, ортогональном к линии «излучатель-приёмник». Но термин «поперечный эффект Допплера», на наш взгляд, неудачен, поскольку эффект имеет место и при удалении-приближении излучателя.

Поскольку, согласно СТО, причиной квадратичного эффекта Допплера считается релятивистское замедление времени у движущегося объекта, то здесь со всей остротой возникает проблема: теория, построенная на относительных скоростях, оказывается бессильна ответить на вопрос о том, какой из двух рассматриваемых объектов движется, а какой покоится. Простейший пример: два космических аппарата обмениваются радиосигналами. В системе отсчёта первого аппарата, со скоростью V движется второй из них, значит, и «время замедляется» на втором – т.е. частота, принимаемая на первом аппарате, окажется уменьшена. Но в системе отсчёта второго аппарата, со скоростью V движется первый из них, значит, и «время замедляется» на первом – т.е. частота, принимаемая на нём, окажется увеличена. Это – пример внутреннего противоречия СТО, которое называется «парадоксом близнецов» (или «парадоксом часов»). Сей парадокс убил несколько поколений мыслителей, которым вдалбливали, что квадратичный эффект Допплера наблюдается на опыте в полном согласии с предсказаниями СТО. В действительности, этого согласия нет. Первые же эксперименты с транспортируемыми атомными часами (1.13) показали, что результаты их сличений, после действия «релятивистского замедления времени», принципиально однозначны – в полном согласии со здравым смыслом. Более того, эти результаты оказалось невозможно объяснить на основе концепции относительных скоростей. Для правильного расчёта, пришлось учитывать индивидуальные замедления хода у лабораторных и у транспортируемых часов, а затем брать соответствующую разность интервалов времени, отсчитанных теми и другими часами.

Такое положение дел легко и естественно следует из концепции локально-абсолютных скоростей (1.6). Согласно этой концепции, квадратичный эффект Допплера обусловлен отнюдь не «замедлением времени», а, по логике «цифрового мира», уменьшением частот квантовых пульсаций у движущихся частиц вещества – и, соответственно, сдвигами вниз квантовых уровней энергии в движущихся физических телах, только движение здесь следует понимать в локально-абсолютном смысле. Квадратично-допплеровские сдвиги квантовых уровней описываются формулой, аналогичной (1.12.1), а именно:

Этот «цифровой» физический мир (СИ) - id59712_expr1_12_2.png

но роль V здесь играет локально-абсолютная скорость. Таким образом, квадратично-допплеровские сдвиги (1.12.2) квантовых уровней энергии в движущемся физическом теле являются объективным физическим признаком того, что тело движется с локально-абсолютной скоростью, равной V.

К вопросу о происхождении квадратично-допплеровских сдвигов (1.12.2), которые являются элементарным следствием закона сохранения энергии, мы вернёмся в 4.7. Сейчас же мы расскажем об экспериментах, в которых квадратичный эффект Допплера однозначно свидетельствует о несостоятельности концепции относительных скоростей и о справедливости концепции локально-абсолютных скоростей. Собственно, об одном из таких экспериментов – [Ч1], с использованием эффекта Мёссбауэра – мы уже рассказали в пункте 1.7; в этом эксперименте излучатель и приёмник двигались на лабораторном столе. Теперь расскажем об экспериментах, в которых использовались глобальные транспортировки атомных часов.

1.13. Что показали кругосветные транспортировки атомных часов.

В октябре 1971 г. Хафеле и Китинг проделали выдающийся эксперимент [Х2,Х3] с транспортируемыми атомными часами на цезиевом пучке. Четвёрку таких часов аккуратно сличили со шкалой времени Военно-морской обсерватории США (USNO), а затем, обычными пассажирскими рейсами, выполнили две кругосветные воздушные транспортировки этой четвёрки – в восточном и западном направлениях.

После каждой из этих кругосветок, четвёрку часов вновь сличали со шкалой USNO. Результирующие разности между показаниями часов и шкалой USNO воспроизведены на Рис.1.13.1. Нулю оси абсцисс соответствует 0 часов Всемирного времени (UT) 25 сентября

Этот «цифровой» физический мир (СИ) - id59712_ibf14c59d21

Рис.1.13.1

1971 г. Трёхзначные цифровые метки – это индивидуальные номера часов из рабочей четвёрки, метка «Average» обозначает среднее по четырём разностям. Поведение этой усреднённой разности в окрестностях интервалов времени, приходившихся на транспортировки, воспроизведено на Рис.1.13.2. Этот рисунок наглядно демонстрирует, как судили о дополнительных изменениях показаний, накопленных в ходе транспортировок. А именно: делали прогноз дрейфа усреднённой разности, и находили сдвиг между её прогнозным и фактическим значениями – на момент возобновления сличений.

13
{"b":"284894","o":1}