Литмир - Электронная Библиотека
Содержание  
A
A

Глина и другие продукты выветривания удаляются эрозией, особенно в горах и вообще на крутых склонах. В результате этого на поверхность выходит невыветрелая порода, подвергающаяся активному химическому воздействию. В главе второй рассказано о том, как гранит, образовавшийся при затвердевании магмы на большой глубине, постепенно выводится на поверхность. Веками происходящее удаление мощного чехла пород, первоначально покрывавших крупный гранитный массив, имеет важные последствия. По мере уничтожения этого чехла постепенно меняются условия, в которых находится гранит. Постепенно понижаются давление и температура. Наконец, когда кровля гранита полностью эродирована, он появляется на поверхности Земли и попадает в совершенно новые условия, характеризующиеся наличием воздуха, воды и кислорода. С исчезновением вышележащих пород объем гранита увеличивается, он трескается и даже подвергается разрывам; он не распадается на отдельные зерна, но в нем возникают трещины, параллельные поверхности (фото 5). Большая часть минералов, из которых состоит гранит, образована глубоко в толще коры и имеет строение, соответствующее высокому давлению и температуре, плохо приспособлена к более "легким" условиям на поверхности и чувствительна к воздействиям атмосферы и гидросферы. Подобно жестяным банкам, вынесенным из помещения на открытый воздух, эти минералы становятся "жертвой" изменившихся условий. Они химически разлагаются на составные элементы, которые дают начало новым веществам, приспособленным к существованию в условиях земной поверхности. Как показано в одной из последующих глав, подобные вещи происходят и в биосфере.

Эти химические преобразования минералов на поверхности Земли оставляют следы, по которым наличие таких преобразований может быть установлено много лет спустя после того, как произошли сами изменения. Те или иные участки земной коры постоянно прогибаются, образуя широкие, но неглубокие желоба или впадины; некоторые из них затопляются морем. Если на поверхности погруженного участка имеется зона выветрелых пород, она постепенно покрывается слоем донных морских осадков. Позднее, когда эта часть коры снова испытает поднятие, эрозия снова выведет на поверхность зону выветрелых пород из-под слоя морских отложений.

Механическое разрушение. Хотя большая часть процессов выветривания относится к химическим, существуют и механические процессы. Коренные породы и частицы рыхлого грунта расщепляются большими и малыми корнями растений. Черви, муравьи, термиты, закапываясь в рыхлый грунт, выносят огромное количество мелких частиц породы на поверхность (по одной из оценок 10 тонн на 0,4 га в год), в буквальном смысле выворачивая грунт наизнанку. Наконец, на вершинах высоких гор и в холодных высоких широтах агентом механического разрушения пород является лед. При замерзании воды и образовании льда объем ее увеличивается на 9%. Давление замерзающей в трещинах воды раздвигает стенки трещин. Там, где при суточных колебаниях температура ниже точки замерзания, как это бывает в высоких широтах или в горах, огромные площади покрыты обломками пород, совершенно скрывающими находящиеся ниже коренные породы. Эти продукты механического разрушения, в отличие от химически измененного материала, почти не отличаются от исходных пород.

Процессы растрескивания (фото 5), которым подвергаются выведенные на поверхность в результате длительной эрозии грубозернистые магматические породы, мы лишь условно относим к процессам выветривания. Трещины возникают не потому, что на породы воздействует атмосфера и гидросфера, а потому, что по мере приближения массива пород к поверхности огромное давление, под которым формировались породы, снижается почти до нуля.

Снос продуктов выветривания

Превращая различными способами коренные породы в рыхлый материал, химическое и механическое выветривание подготавливают породы к следующей фазе кругооборота пород - переносу в пониженные участки. Рыхлая масса на склоне не неподвижна - она перемещается. Сила тяжести действует на нее в направлении вниз по склону, к ближайшему водотоку (рис. 10, правая часть). Временами происходит быстрое смещение большой массы в виде оползня. Часто рыхлый материал смывается вниз по склону, особенно во время сильных ливней, а иногда медленно стекает, образуя языкообразные потеки, состоящие из жидкой грязи и камней. Но большая часть продуктов выветривания движется вниз незаметно, со скоростью всего около 2,5 сантиметра за 5-10 лет. Все виды процессов, в результате которых происходит смещение рыхлого грунта вниз по склону, - медленное сползание, оползни и другие - известны под общим названием склоновых процессов.

История Земли - img_17.jpeg

Рис. 10. В водоток поступает вода (в ходе круговорота воды) и наносы (в процессе круговорота пород). Слева показано движение только воды, справа - только продуктов выветривания. В действительности оба процесса происходят на обоих бортах долины

С точки зрения человека скорость движения, составляющая 2 5 сантиметра за 10 лет, представляется небольшой. Но в рамках геологического времени этой скорости достаточно, чтобы поддерживать в активном состоянии круговорот вещества пород При этой скорости (25 сантиметров за 100 лет) данный объем рыхлого грунта переместится с вершины к подножию горного склона длиной 1,6 километров приблизительно за 630 000 лет. Но Северная Америка существует как область, где преобладает суша, по крайней мере в тысячу раз дольше по сравнению с этим временем, а может быть и еще дольше. Таким образом, если мы представим себе, что склоновые процессы действуют на каждом склоне каждого континента, то нас поражает, насколько велик общий объем осадков, поступающих со склонов в реки хотя бы в течение одного года.

Рыхлый чехол продуктов выветривания покрывает 3/4 общей площади суши; поэтому, несмотря на его малую толщину и преимущественно небольшую скорость движения, объем материала, перемещаемого склоновыми процессами, огромен. Точной цифры никто не знает, но можно предполагать, что объем склонового материала, поступающего ежегодно в реки, достигает несколько сотен кубических километров. Находящиеся в движении или перемещенные и отложенные продукты выветривания горных пород по определению являются отложениями, вне зависимости от того, какие процессы их перемещают или переместили. Однако большая часть отложений на суше переносится водотоками.

Водотоки

Изменения расхода водотоков. Подготовленная выветриванием и перемещаемая вниз по склону склоновыми процессами масса рыхлого материала рано или поздно достигает водотока, где она начинает двигаться совершенно иначе. Чтобы понять, что при этом происходит, мы должны более внимательно исследовать, что же именно заставляет водоток непрерывно двигаться. Прежде всего посмотрим на искусственный водоток, текущий в сточной канаве или трубе, отводящей дождевые воды и различные отходы с шоссе, улиц или из зданий. В промежутках между дождями во многих канавах сток прекращается, потому что бетонные стенки изолируют их от грунта и грунтовая вода в них не попадает. Не таковы природные водотоки. За исключением пустынь и других засушливых территорий, водотоки продолжают течь повсюду в любую погоду. Их объем постоянно меняется, но течение не прекращается, потому что они постоянно питаются водой, впитывающейся в грунт вокруг них и просачивающейся в русло. Большая часть грунтов, как скальных, так и рыхлых, проницаема для воды, то есть вода может в них просачиваться и медленно перемещаться, используя мельчайшие поры, соединенные между собой. При каждом дожде грунт поглощает воду, и после медленного подземного путешествия, долгого или краткого, эта грунтовая вода просачивается в ближайший водоток (рис. 10, левая часть), вне зависимости от того, выпадает в это время дождь или нет. Таким образом вода, заключенная в грунте, регулирует течение водотока, питая его по всей длине в промежутках между дождями. Это позволяет водотоку действовать как транспортирующий агент постоянно, а не только во время дождей. Наносы попадают в водоток способом, во многом схожим со способом поступления грунтовых вод. Медленное смещение грунта и другие склоновые процессы питают водоток наносами по всей его длине (рис. 10, правая часть).

11
{"b":"240889","o":1}