"Все свои запатентованные изобретения, кроме одного, — говорил изобретатель Эрик Лейтуэйт, — я сделал, с кем-то беседуя… Мне приходится излагать для него все свои соображения более подробно, чем я делал бы это для себя, и в этих попытках внести ясность и возникает открытие".
Стремление кому-то что-то объяснить часто становится источником подлинных открытий. П.Л. Капица писал:
"Менделеев искал, каким способом легче объяснить студентам свойства элементов, чтобы эти свойства могли восприниматься по определенной системе. Он распределял элементы по карточкам, складывал эти карточки в разном порядке и, наконец, нашел, что карточки, разложенные в виде периодической таблицы, представляют собой закономерную систему. 1 марта 1869 г. таблица была напечатана отдельным изданием и немногим позже вошла как приложение во второй выпуск "Основ химии". Таким образам, периодическая система элементов в основе своей возникла из педагогической деятельности Менделеева как профессора Петербургского университета.
Второй случай, немного более ранний, относится к математике. В начале XIX в. русское правительство решило, что все чиновники должны иметь среднее образование. Те чиновники, которые не имели аттестата зрелости, должны были его получить. Чтобы облегчить им это, были созданы курсы, которые готовили к экзаменам на аттестат зрелости. Одним из преподавателей геометрии таких курсов был Лобачевский. Ему было тогда 24–25 лет. Он был очень молод, и он объяснял престарелым чиновникам принципы евклидовой геометрии. И они никак не могли понять, откуда берется аксиома о непересекаемости двух параллельных линий.
Лобачевский долго бился над тем, чтобы дать подходящее объяснение, но убедился, что такого объяснения не существует. Он понял, что можно построить такую геометрию, при которой линии всегда пересекаются. Так была создана его неевклидова геометрия. Таким образом, он нашел новую область математики, которой, как вы знаете, суждено было сыграть фундаментальную роль в современной физике.
Могу привести еще пример, о котором мне рассказал известный физик Дебай. Дебай в то время был преподавателем, профессором в Цюрихе. У него был ученик, тоже преподаватель, Шреёдингер, тогда еще мало известный молодой ученый. Дебай познакомился с работой де Бройля, в которой де Бройль, выдвинувший, как вы знаете, гипотезу о существовании волновой структуры электрона, показал, что при известных условиях интерференции можно заменить движение электрона волновым движением. Идея эквивалентности волнового движения и квантовых процессов, волнового движения и корпускулярного движения была воспринята целым рядом физиков весьма отрицательно. Отрицательно отнесся к ней и Шрёдингер. Когда Дебай попросил его рассказать о работе де Бройля, Шрёдингер сначала отказался. Потом, когда Дебай, пользуясь своим положением профессора, снова предложил ему это сделать, Шрёдингер согласился, и он начал искать, как можно было бы объяснить идеи де Бройля в наиболее полной и точной математической форме. И когда он рассказал о работах де Бройля в том представлении, какое он считал наиболее точным, Дебай ему сказал: "Послушайте, ведь вы же нашли новый замечательный вид уравнения, который является фундаментальным в современной физике". Таким образом, в результате педагогической деятельности было найдено и волновое уравнение — основное уравнение современной физики".
"Контрольный перечень" может помочь существенно улучшить качество производимых товаров.
Японцы улучшили качество своих товаров во многом благодаря тому, что приняли "концепцию встроенного качества" американца У. Деминга. У. Деминг считал, что для того, чтобы добиться отличного качества, необходим один-единственный базовый принцип: проверять качество на каждой операции, а не как в Америке его времени — качество конечного продукта в целом.
В пользу его теории свидетельствует анализ большинства крупных аварий. Как правило, они были результатом не одного, а целого ряда нарушений. Жесткий контроль за элементарным порядком во всех подразделениях по принципу У. Деминга — лучшее средство от катастроф.
В западных фирмах часто составляется "контрольный перечень" работ в виде записи цветным фломастером на пластиковой доске фамилий работников и видов работ, которыми они занимаются. Иногда эти работы оформляются в виде компьютерных распечаток. Ход всех работ освещается в журнале. Такой журнал ведет и крупная нефтяная компания, и нью-йоркский таксист, занимающийся частным извозом (попробуйте-ка что-то не записать, а потом не заплатить налоги!).
Сами американцы иногда иронизируют над этим "формализмом". И могут рассказать, к примеру, такой анекдот: "Сварщик записывает в журнал: "Вид операции — выманивание из трубы кошки, характер операции — произношение "кис-кис-кис" 20 раз с интервалом в 3 секунды".
Но этот "формализм" — один из столпов, на котором зиждется процветание Америки.
"КОНТРОЛЬНЫЙ ПЕРЕЧЕНЬ" И АНАЛИЗ
Контрольный перечень" позволяет раздробить объект исследования, что позволяет изучить объект во всех деталях. А что, если само исследование провести в виде контрольного перечня типовых вопросов? Такой мыслью задался Мэтчетт, создатель так называемого "фундаментального метода проектирования". Он составил несколько подобных перечней вопросов.
Один из перечней выглядит следующим образом:
"Каким образом каждую часть проекта можно
— упростить?
— объединить с другими?
— перенести?
— исключить?
— унифицировать?
— модифицировать?"
Этот универсальный "контрольный перечень" можно применить при изучении любого проекта.
Перечень отлично работает при "анализе функции". Вспомним — мы его уже использовали. Но мы можем анализировать объект не по "божественному наитию", а по определенным принципам. В частности, по контрольному принципу Мэтчетта.
1. Упростить.
а) Выполнить функцию частично.
Когда немецкие танки были уже под Москвой, для железных "ежей" не хватало металла, и их стали делать из дерева, окрашивая в черный цвет. Не было ни одного случая, чтобы немецкий танк пробовал на себе проверить подлинность противотанкового ежа.
Во время Первой мировой войны в воды Балтийского моря российские моряки сбрасывали плавающие перископы. Естественно, немцы не могли проверить, действительно ли под водой находятся подводные лодки, и потому перископы весьма успешно мешали судоходству.
Шасси на Ил-2 убиралось не до конца. Благодаря этому штурмовик мог приземлиться и при перебитой огнем с земли системе выпуска шасси.
б) Отделить функцию.
Во время Великой Отечественной войны один из солдат вызвался прикрыть отход своих товарищей. Когда его взвод перешел на запасные позиции, солдаты услышали последнюю, очень долгую, очередь из пулемета. Когда очередь смолкла, все решили, что оставшийся погиб.
Однако это оказалось не так. Зарядив последнюю ленту, боец прикрутил спусковой крючок проволокой и, пока немцы вжимались в землю, рванул в темноту.
Свою функцию — стрельбы — этот солдат "отделил" от себя и "оставил" с пулеметом, сам же покинул свою позицию, что спасло ему жизнь.
Примерно такой же принцип — отделения функции — применил Жиллетт, изобретатель одноразовых лезвий. Он был первым, кому пришло в голову отделить от традиционного бритвенного инструмента деталь с режущей кромкой.
По словам самого Жиллетта, эта идея осенила его во время бритья. Но если бы он составил несложную таблицу с двумя колонками "деталь" и "функция", то мог бы внести в процесс бритья еще более кардинальные изменения. Попытаемся представить, как могла бы выглядеть подобная таблица.