Литмир - Электронная Библиотека
A
A

Галилей открыл горы на Луне, четыре спутника Юпитера, фазы у Венеры и пятна на Солнце. Каждое из этих открытий в отдельности могло бы сделать его имя бессмертным.

Всего этого он добился благодаря искусству "анализа исходных материалов".

А вот пример из нашей истории. В 1920-х годах на Балтийском заводе в Ленинграде начали проектировать лесовозы — чуть ли не первые после революции. Естественно, обсуждался вопрос, какой двигатель выбрать. Известно, что дизель значительно экономичнее паровой машины; по этой причине паровые машины в 1920-е годы уже доживали свой век. Тем не менее конструкторы Балтийского завода все же предпочли пар, и вот почему. Лесовозы должны были доставлять лес из Архангельска в Англию. В Архангельске не было нефтяного топлива, к тому же, выгрузив лес в Лондоне, корабль должен был идти обратно с балластом — таким балластом и стал дешевый английский уголь, который судно использовало в следующем рейсе.

Перед решением любой задачи полезно прежде всего прикинуть: что имеется? И составить перечень — но не только материалов, но и их возможных функций. Любой анализ исходных материалов в конечном счете — тот же анализ функций.

Зададимся, к примеру, следующим вопросом: что можно предложить для того, чтобы предотвратить снос морских буровых вышек ледовыми полями? Это довольно сложная проблема — но посмотрите, как легко генерировать идеи, если мы составим список элементов, находящихся в нашем распоряжении, и свойств этих элементов. Элементов немного — вода, воздух, нефть и попутный газ, но, подробно расписав их свойства, мы можем сразу найти целую серию решений.

Первое — вода. Что делает вода? Поддерживает лед. Отсюда первая идея — использовать твердую металлическую камеру, которая, попеременно наполняясь водой и воздухом, вспарывала бы лед снизу.

Ломать лед можно и сверху — наполняя емкость водой, на манер ледокольного судна.

Какие еще свойства у воды? Она соленая. Можно лить воду на состоящий из пресной воды лед — от соли он растает быстрее.

Вода упругая — это дает возможность разбивать лед из водяной пушки.

Какие свойства у льда? Он крепкий. Это значит, что можно прибуксировать айсберг и поставить его на якорь с направления движения льда. Вместе с тем лед рыхлый там, где он находится в воде. Можно поставить подводный винт, который бы разрыхлял подводную часть льда, — подобный метод прежде использовали на некоторых ледокольных судах.

Лед способен плавать только на поверхности. Отсюда идея ограждений в виде огромного буя. Наползая на буй передней частью, задней частью льдина остается в воде — и ломается на более мелкие части.

Какие свойства у газа? Он горит. Можно использовать газовую резку.

Итак, мы буквально за несколько минут получили целый ряд вполне действенных идей.

Иногда в общий анализ включается этап анализа физических принципов. Зачем нужен этот этап?

В Первую мировую войну американцы столкнулись с такой проблемой — судно, на которое сбрасывается много бомб, не тонет. За советом обратились известному изобретателю (позднее — консультанту по военным делам при правительстве США), бывшему русскому военному летчику А. Северскому.

Ответ А. Северского был следующим — бомбы надо сбрасывать не на корабль, а… рядом с кораблем. Ударная волна распарывает швы, и корабль идет ко дну.

Подобный совет мог дать человек, хорошо знавший физические принципы.

К сожалению, о необходимости рассматривать физический принцип частенько забывают. Во время Второй мировой войны конструкторы тяжелых танков были озадачены тем, что даже самая мощная броня не спасала танковые экипажи — от внутренней части танковой брони откалывались осколки и поражали людей. Ударная волна, проходя по броне, составляла узлы и пучности, — из-за этого и отскакивали кусочки брони. Явление это было неожиданностью для конструкторов. С этой проблемой они тогда не справились толком (активная защита появилась много позже), а вот в самолете Ил-2 против этого явления были предприняты специальные меры. Бронеспинку делали не из одного толстого листа брони, а из двух более тонких. Ударная волна первого листа не проходила во второй лист. Это внесло свою лепту в легендарную живучесть "илов".

Конструкторы Ил-2 учли свойства ударной волны — но, к сожалению, не учли в полной мере другого физического принципа, и очень важного, — центра тяжести. Летчики столкнулись с тем, что прицельная очередь уходила ниже цели. При исследовании выяснилось, что виноват длинный магазин к авиационной пушке. Самолет стрелял в наклонном положении, магазин опустошался, центр тяжести самолета менялся, и нос опускался вниз. Немного, но достаточно, чтобы сбить прицел. Пришлось менять пушку — на ту, для которой снаряды располагались в крыле.

Хотя понятие "центр тяжести" занимает относительно небольшое место в учебниках физики, в технике оно играет огромную роль. О связанных с центром тяжести причудах техники можно написать отдельную книгу; мы ограничимся только несколькими примерами.

Перед Первой мировой войной на вооружение русской армии поступила "горская шашка". Автор ее, Горский, решил сделать шашку, которой можно было бы и колоть, и рубить. Шашка была изогнутой, как и прочие шашки, но рукоятка и кончик шашки находились на одной оси, что позволяло вонзать оружие в противника.

Однако в армии шашку сочли неудобной, и от нее со временем отказались. Что же было причиной неудобства? Изгиб шашки был впереди ее оси, а это значит, что центр тяжести тоже располагался впереди оси, хотя у шашки центр тяжести должен быть сзади. Вспомним топор с его изогнутым назад топорищем. То, что центр тяжести у топора находится позади, позволяет легко его направлять.

По сути, объединив шашку и палаш, Горский произвел "анализ функций" — но не сделал анализа физического принципа. Потому-то идея и оказалась негодной.

Там, где может вмешаться физический принцип, надо: 1) точно его определить; 2) подробно расписать все формы проявления этого принципа; 3) найти потенциально опасные или полезные формы; 4) привлечь уже известные принципы для борьбы с опасными формами и использования полезных.

Пример — задача уменьшения ущерба от землетрясений.

Первый этап. Сейсмическая волна — это такая же волна, как и всякая другая. Физический принцип явления — распространение волны.

Второй этап. Формы проявления волновых свойств — наложение и вычитание, огибание, пучности и узлы, резонансные и колебательные свойства, отражение, изменение угла и скорости при переходе сред.

Третий этап. Пытаемся найти среди форм проявления физического принципа потенциально полезные. К примеру, возьмем колебательные свойства.

Четвертый этап. Минареты в Средней Азии строят с полукруглым фундаментом, который покоится на полукруглом ложе. Между ложем и фундаментом есть слой из сухих веток. Приняв удар, минарет отклоняется, а затем, колеблясь, постепенно освобождается от энергии. Тогда как энергия волны с кнута срывается с резким щелчком, минарет, став резонансной системой, становится ловушкой для волны. Колебательные свойства сейчас используется при строительстве японских небоскребов (хотя вряд ли японские строители позаимствовали этот метод в Средней Азии).

Можно на третьем этапе выбрать другую форму — "отражение". Мы знаем, что волны отражаются от поверхностей. Это значит, что зданию мало что будет грозить, если оно будет покоится на массивной плите. Сейсмическая волна отразиться от плиты. Не в этом ли заключается разгадка тайны баальбекских плит? В Баальбеке храмы наверняка строили навечно.

Можно на третьем этапе выбрать и "наложение". Вспомним, как морские волны, дойдя до волноломов, меняют направление и начинают друг друга гасить. Полагают, что подобный принцип использовали древние зодчие. Иначе не объяснить уходящие глубоко в землю стены, сужающиеся к концам. Волны, накладываясь друг на друга в здании, могут вызвать негативный эффект. Значит, стенам здания нужно придать одинаковую толщину, а само здание не должно менять профиль по ходу распространения волны (то есть у большого здания не должно быть маленьких пристроек).

55
{"b":"223832","o":1}