Литмир - Электронная Библиотека
A
A

Создав паровую машину, Джеймс Уатт вынужден был решить задачу, как превратить круговое движение в прямолинейное. Путем проб и ошибок он создал "параллелограмм", который с грехом пополам справлялся с этой ролью. Однако, строго говоря, параллелограмм Уатта давал не прямолинейное движение, а криволинейное. Это преждевременно изнашивало механизмы и заставляло изобретателей искать новые принципы преобразования — методом проб и ошибок, которые лишь иногда приносили некоторые улучшения.

Русский математик Чебышев проанализировал эту проблему с точки зрения математики. Он решил не улучшать существующие машины, а рассчитать идеальный вариант — то есть создать механизмы, в которых криволинейное движение возможно бы меньше отклонялось от прямолинейного, определив при этом наивыгоднейшие размеры частей машины.

Благодаря проделанной работе Чебышев получил несколько новых конструкций приближенно-направленных механизмов. Некоторые из них сразу нашли применение.

За этапом правильной постановки задачи следует этап определения стратегий изучения объекта. Это необязательно значит, что мы разбираем объект на детали; в первую очередь мы выделяем именно области исследования, определяем метод изучения объекта.

Относительно тех же танков первой стратегией можно выбрать стратегию рассмотрения "кинематических характеристик" танка. Кинематический анализ определяет параметры танка в движении. Эту большую стратегию лучше всего разбить на более мелкие подстратегии, такие как "скорость", "ограничения на перемещение" и т. д.

Переходя к подстратегии "скорость", конструкгор в первую очередь определяет, с какой скоростью должен двигаться танк. Эта скорость обусловит требования к двигательной установке, ходовой части и т. д. Заметим, что эти требования, в свою очередь, обусловливают и размеры моторно-трансмиссионного отделения и диаметр катков и т. д. — то есть затрагивают общую компоновку. Отсюда можно сделать вывод: стратегии нельзя применять по одиночке, проектировщику какого-то отдельного элемента следует иметь представления обо всем изделии.

Рассмотрев подстратегию скорости собственно танка, следует перейти к подстратегии скоростных характеристик перемещения его частей. К примеру, можно задаться вопросом: "Насколько существен такой параметр, как скорость поворота башни?". Ответы на подобные вопросы обычно дает опыт. Сражения Второй мировой войны показали, что скорость поворота башни принципиально важна. Экипажи Т-34 использовали большую подвижность башни при встрече "лоб в лоб" с немецкими танками. После выстрела, за которым следовала перезарядка орудия, Т-34 немедленно уходил в сторону, поворачивая башню. Медлительный же "Тигр" повернуться не успевал — и Т-34 делал еще один выстрел.

Рассмотрев все скоростные характеристики, следует перейти к следующей подстратегии — "ограничение на перемещение". К примеру, если угол подъема пушки выбрать слишком малым, во время боев в городе танк не сможет стрелять по верхним этажам. Но это относится к легким танкам; к тяжелым это требование обычно не предъявляется — в боях за крупные населенные пункты такие танки, как правило, не используются, поскольку они слишком уязвимы и могут в лучшем случае служить для поддержки пехоты.

Перебирая элемент за элементом, следует определить "ограничения на перемещение" для всех подвижных частей конструкции.

Следующей стратегией может быть "энергетический анализ". Он подразумевает исследование изменения состояния вещества с высвобождением энергии. К примеру, в пушке после выстрела в боевом отделении возникают пороховые газы, ударная волна и высокая температура. Из-за недостаточно полно проведенного энергетического анализа порой приходилось после испытаний переделывать башню. А созданное после войны самоходное орудие СУ-102 с мощной 122-миллиметровой пушкой в серию вообще не пошло именно из-за большого объема пороховых газов, возникающих в тесной башне. Видимо лучше просчитав энергетические процессы, американцы и англичане сразу делали свои самые мощные самоходные установки только с открытой башней.

Следующей стратегией может быть "химический анализ". В объекте могут и не происходить какие-либо химические реакции, но проанализировать химический состав объекта бывает весьма полезно. К примеру, немцы потратили много сил и изобретательности на то, чтобы создать истребитель танков "Фердинанд". Однако необходимость использовать в нем большое количество дефицитной меди не позволила выпускать эти танки серийно. Другой пример — во время войны корпуса советских танков оказались прочнее немецких. А причина в том, что немцы сваривали броневые листы на воздухе, азот и кислород поглощались расплавленным металлом, что ухудшало качество брони. На уральских же заводах применялась сварка под флюсом, изобретенная инженером Дульчевским. Флюс не пускал азот и кислород в шов.

Из этого примера напрашивается вывод: необходимо рассматривать ВСЕ параметры, какими бы незначительными они не казались на первый взгляд.

Следующими этапами анализа могут быть "механический" (определение механизмов, в которых нужны силовые приводы, амортизация и т. д), "человеческий" (анализ действий и передвижений экипажа во время боя, марша, обстрела с закрытых позиций, эвакуации и т. д.), анализ взаимодействия с внешними факторами (защита от непогоды, преодоление распутицы и т. д.), технологический — и так далее.

Задаваясь лишь "энергетическим" или "химическим" подходом, мы в значительной мере ограничиваем себя в рассмотрении объекта — но этот подход своими внутренними чаконами (энергетическими или химическими) подсказывает большое количество идей.

Выбрав стратегию, неизбежно приходится заниматься разработкой подстратегий. Их может быть много. К примеру, при "кинематическом анализе" такими подстратегиями являются "скорость", "ограничение на перемещение", "точность позиционирования", "вид привода", "удобство управлением перемещением" и т. д.

В свою очередь подстратегия "удобство управления перемещением" может также делиться на свои подстратегии ("дистанционное управление перемещением", "стабилизация при движении" и т. д.).

Появление новых подстратегий не усложняет, а УПРОЩАЕТ работу по поиску идей — к примеру, мы привыкли относить стабилизацию лишь к пушке, рассматривая же "стабилизацию" как универсальную подстратегию и применяя ее к различным объектам танка, можно получить ряд новых идей — "стабилизация кресла наводчика", "стабилизация пулемета" и т. д.

Конечно, при анализе возможно и появление нестандартных, побочных идей и стратегий. Их следует ценить особо. Нестандартная идея вряд ли придет в голову противнику или конкуренту — и это может обеспечигь преимущество или нейтрализовать другие "побочные" идеи конкурента.

Известно, что Генри Форд сколотил свою могучую империю, одним из первых умело применив анализ операций. Но мало кто знает, что завоевать рынок ему помогла случайная находка — деталь, найденная автопромышленником у места аварии французского гоночного автомобиля. Любой другой отшвырнул бы пыльный обломок ногой, но Генри Форд пройти мимо и не изучить необычное изделие не мог. Деталь машины удивила Форда прочностью при ее легкости.

Форд отдал деталь на анализ. Оказалось, что в ней присутствует ванадий — элемент, делающий изделия особо твердыми. Форд стал добавлять ванадий в шасси и кузова своих автомобилей — хотя это поначалу стоило дорого и требовало перестройки некоторых процессов. Но скоро это окупилось. Нововведение позволило уменьшить количество стали на одну машину. Кроме того, поскольку в начале века Америка не имела хороших дорог, надежные "форды" быстро снискали популярность, и возросший на них спрос позволил запустить конвейеры на полную мощность. Закон капиталистической экономики: качество переходит в количество.

51
{"b":"223832","o":1}