Литмир - Электронная Библиотека
Содержание  
A
A

Этим системам ничуть не были чужды идеи чисто дедуктивных рассуждений по типу силлогистики Аристотеля. Вот как звучит дошедший до нас из глубины веков разговор философа Махинды, посланца царя Ашоки, ревностного проповедника и распространителя буддизма, с царем Цейлона Ланка Деванампиятиссом. В этом разговоре Махинда проверяет логические способности царя Цейлона, ибо для восприятия философии буддизма, по мнению Ашоки, требуется определенный уровень логического мышления, способности к рассуждениям логического типа:

– Как называется это дерево, о царь?

– Это дерево называется манго.

– Существуют ли здесь еще деревья манго, кроме этого?

– Существует множество деревьев манго.

– А существуют ли здесь другие деревья, кроме этого дерева манго и других деревьев манго?

– Существует множество деревьев, о достопочтенный, но это деревья, которые не есть деревья манго.

– А существует ли здесь, кроме других деревьев манго и тех деревьев, которые не есть деревья манго, еще другие деревья?

– Вот это дерево манго, о достопочтенный.

– Есть ли здесь люди твоего рода, о царь?

– Здесь много людей моего рода, о достопочтенный.

– А есть ли здесь кто-либо, не принадлежащий к твоему роду, о царь?

– Да, их здесь еще больше, чем людей моего рода.

– А есть ли здесь кто-либо, кроме людей твоего рода и других?

– Это я, о достопочтенный.

Результатом этой проверки Махинда был, несомненно, доволен. Условия для распространения буддизма оказались на Цейлоне вполне подходящими, ибо царь Ланка Деванампиятисс вполне справился с задачами выделения классов сущностей и выявления тех жергоновых отношений, которые между ними имеются. Он даже оказался способным на силлогистические заключения! Этот пример показывает, что в Индии периода развития буддийского учения логика уже достигла уровня силлогистики. Однако в ней не был сделан решающий шаг: не совершился переход к замкнутой дедуктивной системе. Силлогистические заключения остались всего лишь одним из приемов для проведения рассуждений. Интересно, что в буддийской логике силлогизм был не трехчленным, как у Аристотеля (две посылки и заключение), а пятичленным. Но его пятичленность определялась не тем, что использовались сориты с четырьмя посылками, а тем, что он представлял собой как бы два силлогизма Аристотеля, сцепленные друг с другом. Рассмотрим пример такого рассуждения.

Моделирование рассуждений. Опыт анализа мыслительных актов - p067_1.png

В этом рассуждении второе утверждение найдено по аналогии с первым наблюдением. Третье утверждение есть переход от частного к общему. Четвертое утверждение устанавливает связь по общности (аналогии) между первым и вторым утверждением. Наконец, общее заключение выводится из всего предшествующего. Таким образом, в пятичленном рассуждении, приведенном нами, используются одновременно индуктивные и дедуктивные рассуждения, а также вывод по аналогии.

Не чужды были буддийским мыслителям и герменевтические схемы. Они, например, широко пользовались так называемым «принципом куропаток», который звучал так: «Если в тексте о чем-то говорится как о множестве, то число элементов множества равно трем». Этот странный принцип обосновывается тем, что по закону о жертвоприношениях количество жертвенных животных (в том числе и куропаток) никак не ограничивалось. С другой стороны, имел место закон, запрещающий убийство. Коллизия этих двух требований и породила конформистский «принцип куропаток».

В философском учении школы хуаянь, процветавшей в Китае, имеются элементы логики, в которой закон тождества понимается не статично, как в силлогистике Аристотеля, а диалектически. В такой форме закон тождества звучит следующим образом: «Всякое Q есть Q и одновременно не есть Q». В учении о мире дхарм говорится:

«Мир дхарм ши это мир явлений, которые изменчивы, многообразны, отличны друг от друга, все события и предметы этого мира взаимосвязаны. Мир дхарм не является миром сущностей, неизменных и вечных. Этот мир есть некоторая единая субстанция. И оба мира неотделимы друг от друга, взаимозависимы, образуют единое неразрывное целое. Ши и ли взаимно обусловлены, взаимно тождественны и различны (выделено нами)».

В этой позиции предугаданы многие законы, которые позже стали изучаться в диалектической логике. В настоящее время эта логика находится в стадии становления, в стадии поиска формального аппарата, который позволил бы ей достичь того же уровня формализации, который достигнут в формальных логиках, отражающих человеческие рассуждения о мире явлений, в котором нет диалектических переходов. Но уже в древности философы и мыслители пытались в своих логических построениях преодолеть статичность и метафизичность описываемого мира и выдвигать положения, подобные тем, которые приняты в философской системе хуаянь или сформулированы в древнеиндийской сутре Ланкаватра: «Вещи не такие, как они выглядят, но и не другие».

Попытки ввести диалектику в схемы логических рассуждений делались, конечно, не только на Востоке, но и в Европе. Достаточно вспомнить Гегеля с его диалектическим методом. Но до сих пор так и не удалось создать формальную систему, в рамках которой описывались бы законы рассуждения, опирающиеся на диалектику. Это дело будущего. И, возможно, для этого потребуется расширение самого понятия формальной системы.

А сейчас мы переходим к описанию двух мощных формальных дедуктивных систем, порожденных наукой Нового времени. Именно эти системы впервые позволили автоматизировать ряд характерных для человека способов рассуждений, опирающихся на схему дедуктивного вывода.

Глава третья. АВТОМАТИЗАЦИЯ ДОСТОВЕРНЫХ РАССУЖДЕНИЙ

Где меч силлогизма горел и сверкал,
Проверенный чистым рассудком,
И что же? Сражение он проиграл
Во славу иным прибауткам!
Н. Заболоцкий. Битва слонов

Исчисление высказываний

Под высказыванием будем понимать утверждение, относительно которого в любой момент можно сказать, является оно истинным или ложным, или по крайней мере предполагать, что ему может быть приписана такая интерпретация. Например, фразы «Пик Коммунизма есть высочайшая вершина СССР», «Все жители земли имеют рост более двух метров», «В Африке находятся более десяти еще неизвестных захоронений фараонов Египта» являются высказываниями. Первое из них истинно, второе – ложно (легко приводятся конкретные опровергающие примеры), а относительно третьей фразы мы не можем говорить, является она истинной или ложной, так как наши знания о еще не найденных погребениях фараонов пока недостаточны. Но мы вполне можем предполагать, что это высказывание, ибо оно обязательно либо истинно, либо ложно.

Не всякие фразы на естественном языке могут быть высказываниями. Например, утверждение «Девушка была очень красивой» таковым не является. Одни мужчины могут согласиться с мнением, высказанным в этой фразе, т.е. посчитать, что это утверждение истинно, но другие могут и не принять данной точки зрения, т.е. посчитать утверждение ложным. Такого рода утверждения в рамках формальной системы, называемой исчислением высказываний, не рассматриваются.

О формальной системе речь шла во второй главе, и читатели, наверное, помнят, что такие системы задаются как четверки, состоящие из множества базовых элементов Т, множества синтаксических правил L, множества аксиом Q и множества правил вывода R. Поэтому, если мы хотим рассматривать исчисление высказываний как формальную систему, то должны задать указанные четыре множества.

В качестве элементов множества Т будут выступать элементарные высказывания, обозначаемые малыми латинскими буквами. Считать или не считать некоторое высказывание элементарным, зависит от нашей воли. Как станет ясно из дальнейшего, этот вопрос не имеет принципиального значения в рамках той дедуктивной системы, которую мы строим. Для описания процедур построения производных высказываний из элементарных, т.е. синтаксических, правил надо предварительно ввести знаки логических связок. В качестве таких связок будут выступать уже известные по первой главе конъюнкция, дизъюнкция и отрицание, которые будем обозначать &,

Моделирование рассуждений. Опыт анализа мыслительных актов - or.png
и
Моделирование рассуждений. Опыт анализа мыслительных актов - not.png
(иногда заменяя, как и ранее, этот последний знак чертой сверху буквы, соответствующей элементарному высказыванию), а также новая связка, называемая импликацией, которую будем обозначать
Моделирование рассуждений. Опыт анализа мыслительных актов - rarr.png
.

14
{"b":"22225","o":1}