Рассмотрим прежде всего схемы рассуждений, опирающиеся на свойства вероятностей, т.е. вероятностные схемы рассуждений.
Рассуждением, основанным, например, на схеме 2, может служить следующее: «С вероятностью, большей 0,7, при переохлаждении двигателя он не заводится с помощью стартера. Вероятность того, что он не заводится, меньше 0,5. Следовательно, вероятность того, что двигатель переохлажден, меньше min(1,1–0,7+0,5), т.е. меньше 0,8». Так же нетрудно придумать примеры и для других схем вероятностных рассуждений.
Рассмотрим две схемы рассуждения с учетом необходимых условий.
Значения q и r необходимости в этих схемах могут оцениваться в каких-то специальных единицах. Можно считать, например, что имеется лингвистическая шкала нечетких квантификаторов необходимости. Тогда q и r будут соответствовать некоторые интервалы или усредненные характеристики этих интервалов. В качестве примера рассуждения с учетом необходимых условий в соответствии со схемой 5 приведем следующее рассуждение: «Если у меня будет дача, то необходимо будет купить велосипед. Дача мне крайне необходима. Тогда покупка велосипеда для меня необходима».
Рассмотрим еще две схемы, в которых наряду с необходимостью учитывается возможность некоторых фактов, явлений или действий. Подобные схемы (как и две предшествующие) характерны для упоминавшейся теории возможностей.
Пример рассуждения, основанного на схеме 7: «Когда поднимается температура в реакторе, чрезвычайно необходимо понизить в нем давление. Возможность повышения температуры в реакторе высока. Следовательно, возможность того, что надо будет снижать давление в реакторе, либо больше нуля, либо больше той возможности, которая приписана событию повышения температуры». Альтернативный характер этого рассуждения обусловлен тем, что q и r при проведении его не были оценены количественно. Это не позволяет сделать окончательный альтернативный вывод в следствии.
Завершим раздел еще тремя схемами рассуждений, в которых учитывается возможная взаимосвязь А и В, а также некоторые соображения из рассуждений по аналогии.
Каждый, кого интересуют схемы правдоподобных рассуждений, может без труда увеличить нашу коллекцию, например, заимствовав их из книги Д. Пойи, приведенной в списке литературы. Нам же необходимо двигаться дальше к тем человеческим схемам рассуждений, в которых активно используются знания, хранящиеся в его памяти, т.е. к рассуждениям, на которые опирается интеллектуальная деятельность человека и ее моделирование в современных интеллектуальных системах.
Глава пятая. ВЫВОД В БАЗЕ ЗНАНИЙ
Приходится порой простые мысли
доказывать всерьез, как теоремы.
О. Сулейменов. От января до апреля
Что такое интеллектуальная система
Проблема моделирования человеческих рассуждений стала чрезвычайно актуальной в конце 70-х годов, когда в области искусственного интеллекта появились практически интересные системы. В последующие несколько лет возникла новая отрасль индустрии – производство интеллектуальных систем.
Причин скачкообразного развития работ по созданию систем искусственного интеллекта было несколько. Главнейшими из них можно считать три: необходимость создания ЭВМ пятого поколения, переход к роботизированным производствам и появление экспертных систем.
Как известно, ЭВМ пятого поколения отличаются от машин предыдущих поколений тем, что в них встроены функции программиста. По словесному заданию задачи, сформулированному на ограниченном профессиональном языке, эти ЭВМ способны сами построить необходимую рабочую программу (синтезировать ее из отдельных модулей, хранящихся в памяти ЭВМ) и выполнить ее. Для этого в состав ЭВМ должна входить база знаний, в которой хранится информация о закономерностях, присущих данной проблемной области, и методах решения характерных для нее задач. Кроме того, в состав ЭВМ должен входить специальный блок – решатель, в который встроены процедуры, подобные логическому выводу. С помощью решателя на основании сведений из базы знаний автоматически синтезируются нужные для пользователя программы. На рис. 29 приведена общая структура ЭВМ пятого поколения. Отметим, что процессор, показанный на рисунке, – это обычное арифметическое устройство с необходимой оперативной памятью, а внешняя память служит для хранения данных, нужных для решения задач. Таким образом, база знаний является новым специфическим блоком (как и система общения и решатель) в структуре ЭВМ пятого поколения.
Рис. 29.
В роботизированных производствах используются роботы третьего поколения. Они должны быть достаточно автономны в своих действиях и уметь выполнять необходимый набор операций в динамически изменяющихся условиях производства. Это означает, что они не могут довольствоваться набором встроенных в них программ жесткого поведения. Интеллектуальный уровень таких роботов должен быть достаточно высоким. В их систему управления необходимо включить специальный блок – планировщик, задачей которого является составление программы действий робота в тех реальных условиях окружающей среды, которые в данный момент наблюдаются рецепторной системой робота. Для планирования целесообразной деятельности робот третьего поколения должен обладать определенными знаниями о свойствах окружающей среды и методах достижения целей в ней. Эти знания хранятся в его базе знаний, показанной в общей структуре робота на рис. 30. Глядя на этот рисунок, легко установить аналогии со схемой, показанной на предыдущем рисунке. В ЭВМ пятого поколения и в роботах третьего поколения осуществляется планирование будущей деятельности: автоматический синтез программы, выполняемый решателем, и программа деятельности, создаваемая планировщиком. Оба блока работают на основе знаний, хранящихся в базе знаний.
Рис. 30.
Экспертные системы, структура которых показана на рис. 31, также содержат базу знаний и логический блок, функции которого похожи на функции решателя и планировщика. Задача логического блока состоит в поиске вывода, ответа на входное сообщение, поступившее в систему. В базе знаний хранится необходимая информация о проблемной области, в которой работает пользователь. Его запросы поступают на профессиональном ограниченном естественном языке. В системе общения они преобразуются во внутреннее представление, с которым работает логический блок. Это внутреннее представление преобразуется в запрос к базе знаний. Если прямого ответа на запрос в базе нет, то логический блок осуществляет поиск косвенной информации, получаемой из хранящейся в базе с помощью достоверного или правдоподобного вывода. Система объяснения (это специфический блок, отличающий экспертные системы от других интеллектуальных систем) при необходимости по требованию пользователя поясняет ему, как получена та информация, которая выдана в качестве ответа.