В самое последнее время стройную концепцию о четырех видах сил грозит нарушить возможное появление на физической сцене пятой силы. Основанием для сенсации послужили результаты некоторых экспериментов.
Со школы мы помним опыты Галилея, когда он бросал с Пизанской башни разные предметы. Ученый пришел к выводу, что без учета сопротивления воздуха все предметы вне зависимости от своей массы и характера материалов, из которых они изготовлены, падают на Землю с одинаковым ускорением. Спустя столетие Ньютон использовал результаты Галилея при создании теории всемирного тяготения. И вот фундаментальная основа принципа сегодня группой физиков из американского университета в Пердью ставится под сомнение. Высказывается предположение о существовании ранее неизвестной пятой силы, противодействующей силе тяжести, в результате чего различные по химическому составу предметы падают с неодинаковым ускорением. Правда, разница очень незначительна — на уровне одной стомиллионной, — и замерить ее сложно.
Для объяснения феномена физики предположили существование «антигравитационной» силы, которая зависит от гиперзаряда, или, иначе, барионного заряда. К барионам относятся протон, нейтрон и другие «тяжелые» элементарные частицы. Чем больше барионный заряд атома вещества (а он равен суммарному числу протонов и нейтронов в атомном ядре), тем сильнее силы «антигравитации». То есть чем больше протонов и нейтронов в ядре, тем сильнее они отталкиваются от протонов и нейтронов другого предмета.
Полагают, что пятая сила в сто тысяч раз слабее гравитации и действие ее проявляется на расстоянии не более 180 метров.
В результате действия пятой силы такие вещества, как железо, с большим числом протонов и нейтронов, будут сильнее отталкиваться Землей, чем, скажем, падающая вода, поскольку в молекулах воды меньше этих частиц. Отсюда: капля воды будет падать быстрее, чем кусок железа.
Эксперименты пока не могут ответить однозначно: быть или не быть пятой силе. Вопрос остается открытым…
О ПОЛЬЗЕ ИНТУИЦИИ
Согласно уравнениям Максвелла, изменяющееся магнитное поле создает меняющееся вихревое электрическое поле. И не только в окружающей среде, но и в пустоте. Оказалось, что электрические силовые линии тоже могут быть замкнутыми, а не обязательно начинаться и кончаться на зарядах. Это означает, что электромагнитное поле может существовать без зарядов. Электрические заряды требуются лишь для возбуждения поля, но в них нет необходимости, чтобы поддерживать его в дальнейшем. Если провести аналогию с волнами на воде, то заряды играют роль камня. Мы видим, как бежит волна по поверхности пруда, несмотря на то, что камень, вызвавший ее, уже покоится на дне.
Электрическое вихревое поле, в свою очередь, рождает магнитное. Таким образом, электрические и магнитные поля, генерируя друг друга, могут свободно распространяться в виде электромагнитной волны и в отсутствие каких-либо зарядов и токов.
Уравнения Максвелла вовлекли электрические и магнитные поля в своего рода общий танец — электромагнитную волну. Неразрывно, мертвой хваткой соединены поля друг с другом, вытаскивают один другого, можно сказать, с «того света». Они заботливо сохраняют друг друга. Допустим, исчезает магнитное поле, но, умирая, оно рождает электрическое поле. Такое же самопожертвование свойственно электрическому полю. Исчезая, оно воскрешает магнитное поле. И пока бежит волна, происходит непрерывная перекачка полей.
Волна может существовать вечно, если не будет поглощена какой-либо средой, в которой рассеет свою энергию. Пример долгожительства электромагнитной волны — так называемое реликтовое излучение, порожденное Большим взрывом, создавшим Вселенную. Реликтовым оно названо именно потому, что несет информацию о давнем ее прошлом.
Когда Максвелл определил скорость распространения электромагнитной волны, то она получилась близкой к скорости света. Что это? Случайное совпадение? Максвелл не прошел мимо него… Ведь еще Фарадей показал, что магнит влияет на луч света. А еще ранее англичанин Юнг и француз Френель доказали волновую природу света. Значит, свет тоже электромагнитная волна! Так Максвелл совершил одно из великих обобщений в физике.
Не просто было прийти к такому выводу. Дело в том, что скорость света была в то время определена ошибочно и принималась равной 193 118 миль в секунду. Максвелл тоже счастливо ошибся и нашел, что скорость распространения электромагнитных колебаний в эфире равна 193 088 миль в секунду.
Да, дерзкой догадке улыбнулся случай. Не всегда он приходит на помощь в науке. Английский физик Джине провел интересную историческую параллель между открытиями Максвелла и Ньютона: «Ситуация была сравнима по своей драматической напряженности с великим моментом, когда Ньютон впервые подверг испытанию свой закон всемирного тяготения путем вычислений, связанных с расстоянием до Луны. По несчастливой случайности Ньютон воспользовался неточным значением для земного диаметра, и это привело к настолько неудовлетворительному численному совпадению, что Ньютон отложил свою теорию почти на двадцать лет. С Максвеллом случилось обратное — оба числа, приведенные выше, совпадают с точностью до 30 миль в секунду. И особенно удивительно то, что оба числа ошибочны, с ошибкой большей, чем 60 миль в секунду… К счастью, Максвелл, по-видимому, осознал, что скорость света была найдена далеко не точно, и поэтому не дал обескуражить себя существенному расхождению в числах, как это случилось с Ньютоном».
И еще одно важное следствие Максвелл извлек из своей теории: он предсказал давление света и даже вычислил его величину: «В ясную погоду солнечный свет, поглощаемый одним квадратным метром, дает 123,1 килограммометра энергии в секунду, он давит на эту поверхность в направлении своего падения с силой 0,41 миллиграмма».
Таким образом Максвелл сам указал, как экспериментально проверить свою теорию — получить электромагнитные волны, подобные свету, и измерить давление света.
Но осуществить предсказания Максвелла оказалось не так-то легко. Сам Максвелл, видимо, не предпринимал ничего, чтобы доказать правильность своей теории — получить электромагнитные волны. Правда, ряд исследователей был очень близок к открытию уже в конце 70-х годов прошлого столетия.
КАК ВЫПУСТИТЬ ДЖИННА ИЗ БУТЫЛКИ
Великие открытия требуют ученых особого склада. Такой исследователь должен обладать, можно сказать, особым экспериментальным инстинктом. Его мысль должна непрестанно интенсивно работать в исследуемой области. Без этих качеств можно пройти мимо нового явления, не заметив его, ведь подчас так невзрачны и незначительны его проявления.
Такие физики вскоре нашлись. Электромагнитные волны получил Генрих Герц, а давление света измерил Петр Николаевич Лебедев. Интересно, что знаменитый физик лорд Кельвин, изумленный изяществом опытов Лебедева, сказал К. А. Тимирязеву: «Вы, может быть, знаете, что я всю жизнь воевал с Максвеллом, не признавая его светового давления, и вот ваш Лебедев заставил меня сдаться перед его опытами…»
Довольно тонкий опыт провел американский физик Генри Роуланд за десять лет до экспериментов Герца. Результат его хотя и не был столь убедительно явным, как у Герца, но тоже сработал в пользу теории Максвелла.
До Максвелла не было полной ясности в том, будет ли механическое перемещение электрически заряженного тела так же вызывать магнитное поле, как и в случае постоянного тока. Экспериментально доказать этот факт было чрезвычайно трудно даже по современным меркам. Ведь ожидаемая величина магнитного поля составляла примерно стотысячную долю от магнитного поля Земли. Роуланд превосходно справился с задачей. Он зафиксировал магнитное поле, создаваемое при движении наэлектризованной поверхности. Его возникновение предвидел Максвелл в своем «Трактате».
Сорок восемь лет прожил человек, предсказавший существование электромагнитных волн. Еще меньше времени судьба отпустила тому, кто получил их экспериментально, — всего 37 лет. Но столь короткой жизни Генриху Герцу оказалось достаточно, чтобы обессмертить свое имя.