Литмир - Электронная Библиотека
Содержание  
A
A

На степень изрезанности диаграммы влияет и вид поляризации излучаемых антенной радиоволн. Поляризация, как мы уже знаем, определяется направлением колебаний вектора электрического поля электромагнитной волны. Оказывается, радиоволны с горизонтальной поляризацией лучше отражаются от земной поверхности, а с вертикальной несколько хуже. Поэтому в станциях, работающих по маловысотным целям, чаще используют вертикальную поляризацию.

Мы уже упоминали о помехах, обусловленных диффузным отражением радиоволн от подстилающей поверхности. Но они обычно менее интенсивны, чем другой вид мешающих отражений — от так называемых «местников»: башен, зданий и прочих сооружений, которые хорошо отражают падающие на них радиоволны. Также сильны отражения от гор, холмов. И даже специальная аппаратура, которая селектирует только движущиеся с определенными скоростями цели, не всегда может подавить эти сильные мешающие сигналы. «Засасываются» в приемник мешающие отражения и через боковые лепестки диаграммы направленности.

Но маловысотную цель непросто не только обнаружить, но и уничтожить. Чтобы поразить цель зенитной ракетой, наводимой локатором, надо в течение некоторого времени знать ее точные координаты. Эту функцию — точного измерения координат цели — выполняет станция сопровождения или слежения. Так вот, отраженный от земли луч мешает станции сопровождения точно измерять координаты, особенно угол места (или связанную с ним высоту полета цели). Часто для анализа сопровождения цели используют такой прием: считают, что источником мешающего сигнала служит не подстилающая поверхность, а своего рода «подземная цель» — антипод. Это зеркальное отображение реальной цели относительно подстилающей поверхности, то есть «подземная цель», находится под землей на расстоянии, равном высоте полета реальной цели.

Антипод мешает сопровождать реальную цель. Следящий радар порой находится в положении буриданова осла: не может решить, что же ему сопровождать: то ли антипод, то ли реальную цель. Так и перескакивает луч слежения с антипода на реальную цель и обратно. А это значит, что ошибки измерения угла места цели велики и ракета, которая будет наводиться по таким данным, не поразит ее.

Для уменьшения вредного влияния земли антенну радара иногда обносят на некотором расстоянии забором из отражающего или поглощающего материала. Забор отсекает от антенны радиоволну, переотраженную землей. Правда, «загораживаются» и цели на очень малых высотах, да и не всегда возможно возвести такой забор.

Другой метод — сделать антенну с четко выраженной плоской нижней кромкой у диаграммы направленности, чтобы она не касалась земли. Но антенна получается и сложной и громоздкой.

Судя по зарубежным источникам, придумано много способов для уменьшения ошибок сопровождения низколетящих целей, но все они отнюдь не универсальны. Природу, видно, трудно обмануть.

Вот сколько нюансов вносит земная поверхность в процесс обнаружения и сопровождения низколетящих целей. Да и поражения. Ведь радиовзрыватель на ракете (а это, по существу, миниатюрный радиолокатор) тоже может очутиться в положении буриданова осла: что подрывать-то, самолет или землю? Ведь расстояния до них соизмеримы.

Надо суметь как-то «отделить плевелы от пшеницы». Плевелы, то есть сорняки, в нашем случае — отраженные от земли сигналы, а пшеница — сам сигнал от низколетящей цели. Как лучше это сделать — пока вопрос. А до тех пор своенравная земля будет доставлять хлопоты операторам маловысотных радаров.

Приключения радиолуча - i_026.png

РАДИОВОЛНЫ И ЧЕЛОВЕК

СЛЫШИМ ЛИ МЫ РАДИОВОЛНЫ?

В начале 60-х годов в одном из американских городов произошел забавный случай. Два человека обошли почти всех врачей своего городка с жалобой на странный недуг. Время от времени им слышались голоса людей, которые советовали им покупать холодильники, стиральные машины, автомобили, мыло, зубную пасту… Эти советы прерывались, по их выражению, «хорами ангелов».

Врачи недоумевали: никаких психических расстройств у пациентов не обнаружилось. А между тем они продолжали утверждать, что отчетливо слышат голоса. Наконец специалисты узнали, что оба пациента недавно лечили зубы у одного и того же врача. Обратились к нему, и дантист сказал, что он запломбировал им зубы цементом особого состава: в нем была незначительная примесь карборунда.

Понемногу все прояснилось. Кристаллы карборунда — типичного полупроводника — совместно с организмом человека образовали простейший детекторный приемник. Кристалл карборунда служил детектором, выделявшим из радиоволн звуковые сигналы. Колебания воспринимались нервом зуба и по нему достигали мозга. Эти миниатюрные детекторные приемники принимали сигналы близлежащей радиостанции, передававшей торговую рекламу.

Известно, что детекторный приемник обладает плохой избирательностью. Если он принимает одинаковые по мощности сигналы разных радиостанций, то в наушниках будет звучать какая-то мешанина. Но положение в корне меняется, если сигнал одной из радиостанций будет много мощнее других. Тогда сильный сигнал автоматически подавляет слабые. Радисты так и называют этот эффект «подавлением слабого сигнала сильным».

«Больные» потому и слышали голоса, что сильные сигналы близко расположенной рекламной радиостанции подавляли в «зубном» детекторе более слабые сигналы других станций. Не исключено, что в будущем по вашему желанию у зубного врача вам вместо обычной пломбы вмонтируют в дупло крошечный радиоприемник. И за электропитанием дело не станет. Гальванический элемент можно тоже разместить во рту. Надо только поставить еще одну пломбу из металла, отличного от того, из которого изготовлена металлическая оболочка пломбы радиоприемника. А электролитом будет… слюна. Конечно, вариант экзотический, но неисповедимы пути моды.

То, что объекты живой природы, а именно ткани растений, могут служить элементами радиоприемника, продемонстрировал еще в конце XIX века наш соотечественник Я. О. Наркевич-Иодко. В 1896 году «Минский листок» сообщил об осуществленной в Минске передаче без проводов, причем антенной и, по-видимому, детектором служил… комнатный цветок. Та же газета в 1902 году писала о подобной передаче в Вильно на сельскохозяйственной выставке. Здесь противоположной станцией беспроволочного телеграфа явились опущенная в воду ветка вербы и телефон.

Эти особенности растений, обнаруженные почти сто лет назад, в наши дни находят практическое применение… В Индии благодаря космической связи все большее распространение получает телевидение. Но возникла проблема: во влажном климате металлическая антенна недолговечна, и к тому же она сравнительно дорога. На помощь неожиданно пришли ботаники. Они предложили использовать для приема телепрограмм… кокосовую пальму. Оказалось, пальма — хороший проводник сверхвысокочастотных токов и прекрасно заменяет громоздкую телевизионную антенну.

А вот стебли некоторых растений, как выяснилось, способны передавать электромагнитные волны светового диапазона таким же образом, как и в световодах — стекловолоконных кабелях. Поэтому свет проникает даже в подземную часть некоторых растений, где у них в основном сконцентрирован фитохром — пигмент, клетки которого поглощают солнечный свет. Под воздействием солнечного света они активизируются и запускают целый комплекс биохимических реакций. Благодаря им растение растет, ориентируется относительно направления силы тяжести, солнца…

Приключения радиолуча - i_027.png

Казалось бы, место фитохрома наверху, в наземной части растений, но природа не случайно распорядилась иначе. Она сконцентрировала большую его часть в небольшом утолщении, расположенном чуть ниже поверхности почвы над корнями, в так называемом «узле», где происходит интенсивное деление клеток. Вот почему трава и другие растения (например, овес) продолжают расти даже после того, как наземная их часть скошена. Чтобы поддержать высокую скорость биохимических реакций, приводящих к образованию новых клеток, природа и запрятала пигмент под землю. На языке экономики это называется «приблизить управление к производству».

62
{"b":"205774","o":1}