Пассажиры международных линий, обслуживаемых американскими самолетами, поначалу очень беспокоились, когда на завтрак стали получать бифштекс в пластмассовой упаковке, на которой было написано: «Стерильность гарантирована лучевой обработкой». Но потом привыкли. Сейчас число стран, в которых в промышленных масштабах используются гамма-лучи для сохранения пищевых продуктов, исчисляются уже десятками.
Гамма-излучение находит и другие применения: предпосевное облучение семян для улучшения всхожести и повышения урожайности, в птицеводстве — Для повышения продуктивности, в рыболовстве — Для улучшения искусственного оплодотворения икры, в медицине — в онкологической практике…
В последнее время выяснилась большая роль, которую играет гамма-излучение в космосе. Оно обнаружено у Солнца и пульсаров. Гамма-излучение создают двойные звезды, одна из которых является нейтронной. Своим сильным гравитационным полем нейтронная звезда как бы засасывает потоки газов со своего спутника. В результате энергетического взаимодействия потоков газа с оболочкой нейтронной звезды и рождается гамма-излучение. Оно возникает в различных частях нашей Галактики. Как и в случае рентгеновских лучей, исследование и объяснение причин гамма-излучения выделилось в отдельное направление — гамма-астрономию.
Существует гипотеза, что когда-то космический ливень жестких электромагнитных волн все-таки проникал сквозь атмосферу (либо атмосфера была потоньше, либо энергия жестких волн была больше), и именно это «вмешательство извне» породило все сказочное многообразие растений и животных. Кстати, гамма-лучи взяли на вооружение селекционеры для получения новых сортов растений. Из облученных семян вырастают мутанты, и ученые отбирают те новые формы, которые обладают нужными свойствами.
Недавно получены данные, которые опровергают сложившееся представление о том, что облучение обязательно повышает частоту мутаций в генетическом аппарате животных. Исследователи из Дальневосточного научного центра АН СССР выяснили, что воздействие гамма-лучей в малых дозах, наоборот, уменьшало в несколько раз число случайных мутаций у горбуши. Они выбрали для экспериментов горбушу именно потому, что у нее случается много спонтанных нарушений генетического аппарата. Напоминает гомеопатию, не правда ли? Там тоже используют микродозы.
Мы познакомились с «этажами» электромагнитных волн, расположенными по частотной шкале выше видимого света. Теперь спустимся вниз. Снова, только в обратном порядке, последовательно проходим гамма-, рентгеновский и ультрафиолетовый «этажи». Оставляем за собой ступеньки видимого «этажа» фиолетовую, синюю, зеленую, желтую, оранжевую, красную и попадаем на инфракрасный «этаж». Свое название этот диапазон получил за соседство с волнами красного света. Длины инфракрасных волн простираются примерно от 7400 ангстрем до одного-двух миллиметров, где уже начинается радиодиапазон.
Инфракрасное излучение невидимо, но тем не менее знакомы мы с ним давно. Оно испускается нагретыми предметами. Издревле человек ощущал его своей кожей греясь у костра.
Пятьдесят процентов излучения Солнца приходится на инфракрасный диапазон. Та часть этого излучения нашего светила, которая перехватывается Землей, застревает в основном в атмосфере. Поэтому исследование звезд, галактик, туманностей и других объектов в инфракрасном диапазоне производится с помощью спутников и межпланетных станций. Хотя первые наблюдения в длинноволновой части инфракрасного диапазона были проведены в начале XIX века английским астрономом У. Гершелем, который исследовал инфракрасное излучение Солнца с помощью призмы и термометра, только к концу 60-х годов XX века сформировался новый раздел астрономии — инфракрасная астрономия.
Приборы, использующие инфракрасный диапазон электромагнитных волн, довольно широко применяются в настоящее время. Уже девять десятилетий применяется инфракрасная спектроскопия для качественного и количественного изучения химического состава вещества.
В годы первой мировой войны начали разрабатываться теплопеленгаторы и другие устройства обнаружения. В 30—40-е годы на основе достижений фотоэлектроники были созданы приборы ночного видения. Инфракрасное невидимое излучение объекта на фотокатоде становилось видимым. Современные системы ночного видения могут вести наблюдение и прицеливание в полной темноте. Как тут не вспомнить о человеке-невидимке Уэллса? В наши дни речь, правда, идет о невидимке в инфракрасном диапазоне. В одном английском журнале рассказывалось, что ведется поиск красителей для пропитки военной формы, которые сделают ее обладателя невидимым в инфракрасных лучах, поскольку ее отражательные свойства будут такими же, как и у окружающей растительности.
По инфракрасному излучению деталей различных устройств (например, двигателей или электронной аппаратуры) можно обнаружить места даже мизерных местных перегревов (до 0,01ºС). При помощи инфракрасной фотографии удается прочитать надписи и обнаружить отпечатки пальцев, которые не видны глазом, а также выявить картины, скрытые под слоем краски.
В военном деле инфракрасная техника применяется широко. Теплопеленгаторы определяют направления на корабли, самолеты, танки и другие цели, представляющие собой нагретые тела. Они могут обнаруживать объекты и по отрицательному тепловому контрасту, например ледяные айсберги на фоне океана. Некоторые виды ракет, в частности противовоздушная американская «Стингер», снабжены инфракрасными головками самонаведения. Для обнаружения подводных лодок используется тепловой контраст кильватерного следа. Инфракрасные приемники, размещенные на спутниках, применяются для контроля за ядерными взрывами, для обнаружения запусков баллистических ракет и космических аппаратов.
Освоение космоса открыло новые области применения инфракрасной техники. К ним можно отнести прогнозирование погоды на Земле, связь в космосе, поиск жизни на других планетах, обследование ресурсов Земли, обнаружение лесных пожаров, ориентацию космических аппаратов, слежение за ракетами и спутниками…
Широкое поле деятельности для тепловизоров (так иногда называют приборы, преобразующие инфракрасное излучение нагретых тел в видимое) предоставляет медицинская диагностика. С помощью этих приборов можно получить «тепловой портрет» пациента.
Когда мы говорим, что у нас температура 36,6 градуса, это совсем не значит, что такая температура повсюду на нашем теле. Оказывается, на различных участках поверхности тела она неодинакова и меняется в зависимости от нашего состояния.
Распределение температуры у каждого пациента индивидуальное. Вместе с тем существуют температурные распределения и контрасты, типичные для человека. В частности, одна из важнейших закономерностей — симметрия «теплового портрета». На регистрации отклонений от специфических температурных контрастов, на выявлении нарушений симметрии тепловых изображений тела человека и основывается тепловизионная диагностика. Отклонения от типичных распределений и контрастов температур связаны с заболеванием органов и тканей, прилегающих к кожному покрову. Есть предположения, что температуры определенных мест на поверхности тела человека через кровеносную и нервную системы связаны с состоянием внутренних органов. По перепадам температур, которые могут составлять как доли, так и единицы градусов, устанавливается диагноз.
Этот метод отличается абсолютной безопасностью, простотой и быстротой обследования, отсутствием каких бы то ни было противопоказаний.
Перечисленные примеры, конечно, не исчерпывают всех областей использования инфракрасных лучей, но дают представление об их больших возможностях.
КРАЙНЕ НИЗКИЕ… ГИПЕРВЫСОКИЕ
И наконец, последний диапазон электромагнитных волн — радиоволны. Самые короткие из них граничат с инфракрасными, а частота колебаний самых низких частот достигает трех герц, что соответствует длине волны в сто тысяч километров. От долей миллиметра до ста тысяч километров — вот сколь разные по длине волны, а следовательно и по особенностям их поведения обобщены одним словом «радиоволны».