Литмир - Электронная Библиотека
Содержание  
A
A

Это излучение, проходя сквозь атомы, заставляет их, по спусковому механизму фотоэффекта, выбрасывать те внешние электроны, что крутятся с той же частотой f(в отличие от внутренних электронов, они излучают очень слабо, поскольку имеют гораздо меньшие значения скоростей и ускорений, § 3.2). Тогда, атом испытывает отдачу, отчего происходит взбалтывание его узловых электронов, особенно электронов с частотой собственных колебаний f, так же как в опыте Франка-Герца. Поэтому, они сами начинают генерировать излучение f, причём, — в той же фазе, что и падающий свет, поскольку их колебания запущены синхронным с падающей волной внешним электроном (Рис. 160). Его рывок-отдача не только запускает колебания внутреннего электрона, но и синхронизует их с падающим светом.

Баллистическая теория Ритца и картина мироздания - i_173.jpg

Рис. 160. Генерация лазерного света: набор электроном энергии в поле E разряда, его захват и выброс атомом от фотоэффекта.

Таким образом, запальное излучение будет лавинно нарастать, за счёт энергии внешних электронов. Спустя время те восполнят утерянную при вылете энергию, за счёт устройства накачки, затем поглотятся атомами и снова будут испущены при падении волны. Итак, каждый акт усиления начального излучения связан с выбросом и захватом электрона. Недаром, наибольшим КПД и распространением обладают разработанные отечественными физиками Г. Алфёровым и Н.Г. Басовым полупроводниковые лазеры (те, что стоят в СD- и DVD-устройствах), где инжекционная генерация света напрямую связана с внутренним фотоэффектом. Это доказывает тесную связь лазерного излучения с прямым и обратным фотоэффектом — с элементарными актами испускания-поглощения электронов и света атомами среды. Не зря, и сам фотоэффект Планк уподоблял взрывному, лавинному процессу, где свет лишь высвобождает запасённую энергию, служа спусковым механизмом лавины (§ 4.3). Вообще, лазер стали применять в качестве оружия отчасти потому, что его работу издавна иллюстрируют с помощью баллистической аналогии. В лазере атомы сначала запасают энергию, как запасает её тетива лука, арбалета, баллисты, или заряд пороха в ружье, а после энергия взрывообразно высвобождается спусковым крючком, которым в лазере служит сам свет.

В квантовой же физике объяснение генерации лазерного света звучит крайне неправдоподобно. Достаточно сказать, что основное свойство лазерного излучения — его когерентность, равенство частот и фаз у всех волн света, — там объясняют, не рассматривая сами волны и их генерацию, а рассуждая исключительно о фотонах и квантах света, — о неволновой стороне явления. И, вообще, ошибочно считать, что создание лазеров чем-то обязано квантовой теории. Лазеры изначально были разработаны исключительно на основании известного из опытов оптического свойства сред, — способности возбуждённых атомов среды излучать свет заданной частоты под действием падающего света (сугубо классического эффекта фотолюминесценции, § 3.1). Поэтому, первые лазеры были изобретены и построены техниками, инженерами, экспериментаторами, людьми далёкими от квантовой и вообще теоретической физики (так же и первый мазер был построен Басовым и Прохоровым, на основе классической молекулярной радиоспектроскопии и нелинейной теории колебаний). Первые подвижки в этом направлении и, даже, реально работающие лазеры были сделаны ещё в XIX веке инженером-изобретателем Н. Тесла, позднее крайне негативно относившимся и к теории относительности, и к квантовой физике. Созданная им в 1890 г. электронная лампа давала свет по механизму, близкому к генерации монохроматичного света в опыте Франка-Герца (§ 4.8) и уже имела зеркальный резонатор с полупрозрачным участком, как в нынешних лазерах [110, с. 537].

Саму же идею лазера выдвинул в 1939 г., и более развёрнуто в 1951 г., советский техник-энергетик В.А. Фабрикант, причём не в виде научной статьи, а в форме заявки на изобретение. Открытие В. Фабриканта, однако, было отвергнуто, как не реализуемое и противоречащее теории. А построил первый работающий лазер в 1960 г. опять же инженер, американец Т. Мейман, руководствуясь больше не расчётами, а опытом и здравым смыслом (см. www.ritz-btr.narod.ru/mejman.html). Мейман собрал лазер, по сути, в домашних условиях: из простой лампы-вспышки и рубинового стержня. Этот лазер умещался в кармане, как современные лазерные указки [143], и был настоящим эффективно работающим лазером, не шедшим ни в какое сравнение с созданными даже спустя некоторое время громоздкими установками представителей официальной квантовой науки. Мейману, однако, пришлось опубликовать отчёт об этом изобретении в обычной газете, тогда как научные журналы отказывались принять статью к печати, поскольку, во-первых, это была статья не специалиста-теоретика, а во-вторых, лазер Меймана работал вопреки квантовой теории. Сам Мейман основой своего успеха считал, как раз, отход от квантовой догмы, от традиционных представлений, основанных на "незыблемых" постулатах научной элиты. Именно слепая вера в авторитеты ("эффект гуру", как называл его Т. Мейман) не позволила, по словам изобретателя, достичь успеха другим учёным. И неизвестно, были бы у нас вообще сейчас работающие лазеры, не осмелься кто-то пойти против официальных квантовых догм.

То же самое и с мазером — прибором, излучающим радиоволны строго фиксированной частоты и, оттого, послужившим основой для создания лазеров и высокостабильных часов. Мазер тоже работает на чисто классическом принципе возбуждения и усиления электромагнитных колебаний в резонаторе — от пучка возбуждённых молекул аммиака, отдающих энергию собственных колебаний, в виде энергии излучения на стандартной частоте этих колебаний. Дабы обеспечить преобладание усиления над поглощением, пучок молекул, поступающий в резонатор, пропускают через неоднородное электрическое поле. Оно выводит из пучка поглощающие молекулы аммиака, которые не колеблются, а, потому, обладают постоянным дипольным моментом, на который и действует поле. В то же время, колеблющиеся, возбуждённые молекулы аммиака подобны пульсирующему диполю (Рис. 29): их дипольный момент периодически меняет величину и знак, отчего усреднённый по времени дипольный момент и действие электрического поля за время пролёта равны нулю. Поэтому, возбуждённые излучающие молекулы не выводятся из пучка электрическим полем, а, попав в резонатор, возбуждают его на частоте своих колебаний. Колебания молекул аммиака NH 3, имеющих вид пирамидки, с атомом азота N в вершине и тремя атомами водорода H в основании, носят классический непрерывный характер: атом азота механически колеблется, пролетая между атомами водорода и выходя то по одну, то по другую сторону от них (если же атом азота обладает малой энергией, он не пройдёт меж атомов водорода, а молекула не будет колебаться). Так что, дискретные изменения состояний и энергетические уровни из квантовой физики здесь совершенно ни при чём (§ 3.4). Более того, квантовая теория противоречит работе мазера.

Как рассказывает Н.Г. Басов, физик-инженер, совместно с А.М. Прохоровым построивший первый мазер, он обращался с идеей такого генератора ко многим видным специалистам по квантовой теории. И все кванторелятивисты в один голос утверждали, что мазер создать невозможно, что частоту излучения нельзя жёстко зафиксировать, ибо это противоречит принципу неопределённости Гейзенберга (Крюков П.Г. Фемтосекундные импульсы, М.: Физматлит, 2008, с. 53). И, всё же, вопреки догматам квантовой физики, мазер был построен Басовым в 1954 г. Лишь после этого под уже готовое изобретение, реализованное физиками-инженерами, подогнали теоретическую базу кванторелятивисты, будто именно квантовой теории мазер обязан своим появлением. На деле же, видим, что мазер и лазер были созданы не благодаря, а, скорее, — вопреки квантовой теории и должны считаться не триумфом, а грандиозным провалом неклассической физики. То же можно сказать и об основе современных лазерных систем, — полупроводниковых лазерах, идею которых выдвинул всё тот же Басов, хотя против этого восстали все теоретики, твердившие, что такой лазер не сможет работать, — из-за сильного поглощения света полупроводником. А, ведь, ещё в 1920-х годах нижегородский радиоинженер О.В. Лосев наблюдал свечение, исходящее из полупроводников, и эффект усиления, открыв путь создания не только всей нынешней электроники и транзисторов, но и светодиодов с лазерами. В итоге, вопреки всем прогнозам кванторелятивистов, полупроводниковый лазер заработал, да ещё как!

138
{"b":"149327","o":1}