Литмир - Электронная Библиотека
Содержание  
A
A

Энергетически безвредный дом вполне осуществим уже сегодня: прекрасные, недорогие и надёжные, эффективные способы получения энергии давно известны, технически осуществлены, практически опробованы. Но пока для более чем 2,5 млрд. людей главным источником энергии для приготовления пищи и обогрева остаются дрова. Остальные получают энергию, выработанную ужасно грязными и вредными промышленными способами. Тепловые станции загрязняют атмосферу; громадные ГЭС нарушают гидробаланс и затапливают землю на больших площадях; атомные порождают проблему ядерных загрязнений. Нерациональность в отношении природы сопровождается общественной несправедливостью: разрыв в уровне потребления энергии в расчёте на одного человека в разных местах весьма велик. Так, в США душевая выработка и потребление энергии более чем в пятьдесят раз выше, чем в бедных странах.

Для экодома самое простое – использовать энергию Солнца. В большинстве районов Земли её поступает достаточно для удовлетворения любых нужд экодома, и уже есть соответствующие приборы. Широта и облачность, вот что определяет эффективность этих приборов. В центральной Европе годовой приход солнечной радиации составляет 1,1 мвт. час/м2, в районах Сахары – 2,3 мвт. час/м2, в России приход солнечной энергии на горизонтальную поверхность колеблется от 0,7 мвт. час/м2год на севере до 1,5 мвт. час/м2год на юге. В Петербурге 0,93, в Москве 1,01, в Новосибирске 1,14 и в Астрахани 1,38.

Расчёты показывают, что даже при таких не очень хороших климатических условиях нашей страны в средней полосе России двухэтажный коттедж, занимающий в плане 100 м2, за год получает от солнца более 160 мегаваттчас энергии, что превышает всю его годовую потребность даже при расточительном потреблении, и эту энергию солнечного излучения с помощью солнцеприёмных устройств можно уловить и превратить в электрическую, химическую или тепловую. Кстати, появились уже гибридные солнечные батареи, совмещающие в одном элементе свойства тепловых и электрических преобразователей солнечной энергии.

А если избегать расточительности (что в период Великого Отказа будет очень актуальным), то результаты могут быть совсем хорошими. Можно обходиться многократно меньшим количеством энергии без ухудшения условий жизни; мы к этому вопросу ещё вернёмся.

Другой доступный источник – энергия ветра (строго говоря, она, как и все прочие виды энергии, представляет одну из разновидностей энергии Солнца). Этот источник известен давным-давно: для получения электроэнергии ветреная установка впервые была использована в Дании ещё в 1890 году. Ветры дуют повсюду; они особенно постоянны и сильны в прибрежных районах и на акваториях, а особую ценность им придаёт то, что во многих районах, – в России в том числе! – они имеют зимний максимум. Современные ветроустановки способны превращать в электричество более 30 % энергии ветрового потока, так что с их помощью можно компенсировать зимний минимум солнечной энергии.

Следующий источник – энергия биомассы. В биомассе растений, создаваемой в процессе фотосинтеза, солнечная энергия запасается в химическом, «законсервированном» виде. Существуют породы быстрорастущих однолетних и многолетних растений, которые уже сейчас рентабельно выращивать для топливных нужд. Например, в Дании уже применяется технология производства «кирпичей» из соломы для отопления. Кстати, появились установки для производства топлива для автомашин, и что важно, в любом случае используются однолетние растения, чем удаётся сохранять баланс по углекислому газу.

В сельской местности при наличии достаточного количества органических отходов экодом может иметь биогазовую установку. Так, в России разработана установка, которая позволяет фермерскому хозяйству при наличии трёх коров полностью обеспечивать дом теплом и светом, и вдобавок быстро получать экологически чистое удобрение.

Можно использовать энергию движущейся воды, устраивая микроГЭС, которые, в отличие от больших ГЭС, будут в достаточной мере экологически безвредными. Применима энергия термальных источников там, где они есть.

Короче говоря, для разных мест можно выбрать оптимальную конфигурацию внешних возобновляемых источников. При выгодном месторасположении (большие ветроресурсы, солнечный климат, река с пригодными для микроГЭС условиями) уже сейчас можно получать от индивидуальных возобновляемых источников энергию, превышающую потребности дома, а излишки можно использовать для привода сельхозмашин, питания биокультивационных установок, какого-либо минипроизводства, нужд транспорта и т. д. При наличии локальной или большой электросети энергия может передаваться в неё…

Как это ни странно может показаться на первый взгляд, можно отапливать дом, отбирая тепло от холодного воздуха, воды или льда. Всё вещество вокруг нас имеет температуру значительно выше абсолютного нуля. В нём содержится тепловая энергия, но при низкой температуре. Тепло самопроизвольно перетекает от горячих тел к холодным, однако с помощью небольших затрат энергии, например, электрической или механической, можно его заставить течь от холодных тел к горячим. Это подобно тому, как насос заставляет течь воду вверх. Такие устройства называются тепловыми насосами, и мы видим их каждый день: это обычные холодильники. Холодильник отбирает тепло у тел внутри холодильной камеры и отдаёт его через заднюю радиаторную решетку комнатному воздуху.

Чтобы не перегружать нашу популярную книгу излишними техническими мелочами (вы можете найти их в специальной литературе) кратко отметим, что вполне решаема и проблема аккумулирования энергии. Сложность – в создании достаточно эффективных долгосрочных (месяцы), и маневренных (дни, часы) аккумуляторов. Но и они уже тоже есть. Можно строить гравитационные аккумуляторы (ночью излишняя энергия поднимает наверх воду, днём вода, стекая вниз, даёт электрический ток). Можно использовать водородный энергетический цикл (сходный тому, что используется растениями в процессе фотосинтеза). Технология создания металлгидридных аккумуляторов водорода уже развита настолько, что ведущие автомобильные компании начали разработку водородных автомобилей. Расчёты показывают, что металлгидридный водородный аккумулятор объёмом 2–3 м3 способен с лихвой обеспечить энергопотребности одноквартирного экодома в средней полосе России на отопительный сезон.

Как ни смеялись над лозунгами Л.И. Брежнева, но экономика – а словечко это означает «искусство ведения домашнего хозяйства» – и впрямь должна быть экономной. На освещение в современных домах тратится 20—35 % электроэнергии, но уже есть лампы (галогенные, натриевые и т. д.), лучшие из которых потребляют в 6–7 раз меньше энергии, чем обычные лампы накаливания, а их свет по спектру близок к естественному. Ещё один способ экономии – микропроцессорное управление; на рынке уже имеются датчики присутствия и местоположения человека в помещении, в некоторых домах уже действуют автоматические системы управления освещением. Потенциально это позволит снизить осветительное электропотребление в разы.

Помещения с недостатком естественного освещения можно освещать не только с помощью окон и потолочных фонарей. Немалые энергетические преимущества дают появившиеся в последнее время различные светопроводы для естественного света с концентраторами, находящимися снаружи здания. Перечисленные и другие меры способны снизить бытовое энергопотребление в несколько раз. В зимнее время можно не тратить электроэнергию для работы холодильника, забирая необходимый холод с улицы с помощью специального теплового регулятора. Это тоже способ экономии.

Ныне принятые стандарты бытового электрического тока: напряжение, частота – были выбраны в начале ХХ века из соображений удобства построения больших распределительных сетей с крупными электростанциями в качестве источников энергии. В экодоме энергоисточники, как правило, будут генерировать постоянный ток пониженного напряжения. Сначала его придётся преобразовывать в переменный ток с повышением напряжения до принятого стандарта, но в перспективе необходимо изменение стандартов в сторону снижения напряжения и перехода на постоянный ток.

107
{"b":"114736","o":1}