Литмир - Электронная Библиотека
Содержание  
A
A

  Первые эксперименты по наблюдению солнечных нейтрино осуществлены американским учёным Р. Девисом с сотрудниками в 1967—68 с помощью радиохимического нейтринного детектора, содержащего 610 т жидкого перхлорэтилена (C2 Cl4 ). Детектор устанавливался под землёй на глубине 1480 м для подавления фона космических лучей . Регистрация нейтрино основана на методе, предложенном в 1946 Б. М. Понтекорво . Солнечные нейтрино с энергией > 0,814 Мэв образуют в реакции 37 Cl + nе ® е- + Ar радиоактивный Ar с периодом полураспада 35 сут. Согласно расчётам, основной вклад (76%) в эффект должны давать нейтрино наиболее высокой энергии (до 14 Мэв ) от распада 8 В ® 8 Ве + e+ + ne в самой редкой ветви водородного цикла. Поток этих нейтрино зависит от температуры Т как T20, поэтому хлорный детектор является уникальным «термометром» для измерения температуры центральной области Солнца Tc . Теория предсказывала значение Tc » 15·106 K.

  В экспериментах Девиса 37 Ar накапливался в детекторе в течение 100 сут, затем извлекался продуванием через жидкость гелия, адсорбировался активированным углём при температуре 77 К и помещался в пропорциональный счётчик, который подсчитывал количество распавшихся атомов 37 Аг. Измерения, полученные в 1972 (как и первые измерения 1967—68), показали, что нейтринный эффект в несколько раз ниже предсказываемого теорией и не превосходит фоновый эффект детектора (в детекторе под действием солнечных нейтрино накапливалось не более 8 атомов 37 Ar за эксперимент вместо ожидаемых 45).

  Хотя солнечные нейтрино не были с достоверностью зарегистрированы, результаты экспериментов являются важным достижением Н. а., так как показывают, что современные представления о солнечных нейтрино в чём-то неверны. Решение загадки солнечных нейтрино можно искать в трёх направлениях. 1) Возможно, Tc ниже теоретического значения, предсказываемого стандартными моделями Солнца, и составляет около 13×106 K, т. е. лежит за порогом чувствительности «нейтринного термометра»; это означает, что Солнце устроено иначе, чем считалось до сих пор. 2) Может оказаться, что при расчётах моделей используются неверные значения скоростей ядерных реакций; это означало бы, что шкала «нейтринного термометра» неправильно отградуирована. 3) «Нейтринный термометр» вообще может оказаться «испорченным», если по пути к Земле с нейтрино что-то происходит, например распад (если бы они оказались нестабильными частицами), осцилляции (переводящие нейтрино в невзаимодействующие с хлором состояния) и т.п. Для окончательного решения проблемы необходимо повысить чувствительность хлорного детектора, а также провести дополнительно эксперименты с детекторами, чувствительными к нейтрино меньших энергий, например 7 Li, 71 Ga, 87 Rb, 55 Mn. Др. важная задача Н. а. — наблюдение солнечных нейтрино от реакции 1 H + p + e- ® 2 H + ne (с помощью детекторов 37 Cl и 7 Li), которая обязательно сопутствует водородному циклу. Их обнаружение явилось бы доказательством протекания водородного цикла на Солнце, исключило бы гипотезы об аномальных свойствах нейтрино и тем самым подтвердило правильность заключения о том, что CNO-цикл не вносит заметного вклада в генерацию энергии на Солнце (если бы CNO-цикл вносил основной вклад, в детекторе Девиса должно было бы образовываться около 300 атомов 37 Ar).

  Нейтринные вспышки. Потоки нейтрино от др. «спокойных» звёзд, даже самых близких, очень малы и не могут быть зарегистрированы современными методами. Вместе с тем вполне осуществимой представляется задача наблюдения нейтринных вспышек от звёзд в момент их гравитационного коллапса. Наиболее вероятными объектами являются сверхновые звёзды нашей Галактики, непосредственно перед взрывом которых происходит коллапс центрального ядра. Нейтринная вспышка может быть зарегистрирована даже в том случае, если сверхновая оптически ненаблюдаема. Длительность такой вспышки ~0,01 сек (потоки нейтрино у Земли 1010 —1012 нейтрино/см2 за вспышку). Измеряя время запаздывания начала вспышки, зарегистрированного детекторами в разных местах земного шара, можно установить направление прихода нейтринного излучения. Вспышки могут быть зарегистрированы водородсодержащим сцинтиллятором массой в несколько сотен т в виде характерной серии импульсов. Такие эксперименты планируются в СССР и в США.

  Нейтринная астрофизика. Необходимость исследования астрофизических явлений с участием нейтрино породила новую ветвь в астрофизике — нейтринную астрофизику. По современным представлениям, нейтринное излучение, которое сильно растет с увеличением температуры, оказывает решающее влияние на картину эволюции звёзд на завершающих стадиях, когда температура в недрах звезды достигает ~ 109 K и выше. Это связано с тем, что испускание нейтрино происходит из самых горячих, внутренних областей звезды (так как пробеги нейтрино в веществе значительно больше размеров звезды), и поэтому именно нейтринное излучение определяет скорость потери энергии такими звёздами. Примером является влияние гипотетического электронно-нейтринного взаимодействия (предсказываемого универсальной теорией слабого взаимодействия; см. Нейтрино ) на эволюцию ядра планетарных туманностей, учёт которого позволяет согласовать наблюдаемые данные о времени эволюции с теоретическими расчётами; в свою очередь, возможность такого согласования является аргументом в пользу существования этого взаимодействия.

  Когда температура в центре звезды достигает значения ~1011 К, пробег ne становится сравнимым с размерами звезды и при дальнейшем увеличении температуры звезда становится непрозрачной для нейтрино. Поскольку, однако, пробеги нейтрино остаются ещё несравнимо большими пробегов фотонов, перенос энергии в звезде осуществляется посредством нейтринного газа (нейтринная теплопроводность) и потери энергии продолжают определяться нейтринным излучением. При температурах ³ 2×1011 К звёзды становятся непрозрачными и для мюонных нейтрино nm . Такие стадии жизни звезды наиболее загадочны и интересны. Предполагается, что нейтринное излучение играет решающую роль в механизме взрыва сверхновых.

  Развитие Н. а. и нейтринной астрофизики обещает дать ценную информацию не только о строении небесных тел, но по природе самого нейтрино и свойствах слабого взаимодействия.

  Лит.: Нейтрино. Сб. ст., пер. с англ., М., 1970 (Современные проблемы физики); Бакал Дж., Солнечные нейтрино, «Успехи физических наук», 1970, т. 101, в. 4, с. 739—53; Азимов А., Нейтрино — призрачная частица атома, пер. с англ., М., 1969, с. 92—105.

  Г. Т. Зацепин, Ю. С. Копысов.

Нейтрино

Нейтри'но (итал. neutrino, уменьшительное от neutrone — нейтрон), электрически нейтральная элементарная частица с массой покоя много меньшей массы электрона (возможно равной нулю), спином1 /2 (в единицах постоянной Планка

Большая Советская Энциклопедия (НЕ) - i-images-111466900.png
) и исчезающе малым, по-видимому, нулевым, магнитным моментом. Н. принадлежит к группе лептонов , а по своим статистическим свойствам относится к классу фермионов . Название «Н.» применяется к двум различным элементарным частицам — к электронному (ne ) и к мюонному (nm ) Н. Электронным называется Н., взаимодействующее с др. частицами в паре с электроном е- (или позитроном е+ ), мюонным — Н., взаимодействующее в паре с мюоном (m- , m+ ). Оба вида Н. имеют соответствующие античастицы : электронное

46
{"b":"106167","o":1}