Литмир - Электронная Библиотека
Содержание  
A
A

  Кроме пептидных и дисульфидных связей, в молекуле Б. есть многочисленные связи с меньшей энергией взаимодействия, имеющие большое значение для внутренней организации и функции Б. Среди этих связей наиболее существенны так называемые гидрофобные связи, создаваемые неполярными боковыми группами аминокислот. Эти группы, лишённые сродства к воде, имеют тенденцию контактировать между собой внутри молекулы Б. Кроме того, в молекуле Б. имеются водородные связи, образуемые полярными группами, например —СО—NH—, а также электростатические взаимодействия между группами, несущими электрические заряды.

  Пространственная конфигурация (конформация) полипептидной цепи Б. определяется его первичной структурой и условиями среды. При обычных условиях (температура не выше 40°С, нормальное давление и т.д.) Б. характеризуются внутримолекулярной упорядоченностью. «Хребет» полипептидной цепи

Большая Советская Энциклопедия (БЕ) - i-images-197185310.png

  местами может закручиваться спиралью или образовывать полностью вытянутые отрезки (вторичная структура). В обоих случаях возникает система водородных связей. Но в значительной части «хребта» геометрическая регулярность может отсутствовать. Полипептидная цепь в целом «упаковывается» и жестко фиксируется с помощью взаимодействий боковых групп аминокислот (третичная структура). В зависимости от укладки полипептидных цепей форма молекул Б. варьирует от фибриллярной (вытянутой, нитеобразной) до глобулярной (округлой). Детальная конфигурация глобулярных молекул сложна и своеобразна для каждого Б. В молекуле превалирует совершенная упорядоченность, распространяющаяся на положение отдельных атомов. Однако некоторые периферические участки могут быть закреплены менее жестко, а погруженные в растворитель гидрофильные боковые группы остаются вполне гибкими. Конформация некоторых Б., например лизоцима (рис. 2 ), раскрыта рентгеноструктурными исследованиями. Создание упорядоченной прочной конформации Б. определяется целыми системами взаимодействий, находящихся во взаимной зависимости. Смены конформации Б., вызываемые изменениями среды или реакциями, в которые Б. вступают, связаны с изменением ряда взаимодействий. Конформационные переходы охватывают молекулу Б. целиком или ограничиваются определёнными районами. При нагревании, резком подкислении среды и других сильных воздействиях происходит «плавление» молекулы Б. — переход в состояние беспорядочного клубка. Это, как правило, влечёт за собой ряд других превращений, общий результат которых обозначают как денатурацию Б. (см. Биополимеры ). При этом понижается растворимость Б., усиливается вязкость их растворов, теряются ферментативные и другие биологические свойства.

  Каждый из бесчисленного множества существующих Б. имеет особую наследственно детерминированную первичную структуру, присущую только ему. Это обусловливает строго индивидуальную систему внутримолекулярных связей, т. е. уникальную конформацию Б. Поэтому каждый Б. характеризуется собственной «химической топографией» и своеобразными сочетаниями пространственно сближенных химических групп. Часть таких сочетаний служит функциональными центрами молекул Б. Благодаря структурному соответствию, напоминающему отношение ключа к замку (комплементарности), функциональные центры «узнают» и избирательно присоединяют вещества, на которые соответствующие Б. «установлены». Функциональные — активные центры Б.-ферментов специфически присоединяют субстраты и активируют их, ускоряя и направляя химические превращения. При помощи особых центров взаимного связывания («контактных площадок») определённые Б. соединяются по нескольку вместе (структура 4-го порядка) или создают значительно более сложные системы (самосборка крупных белковых структур). Процессы самосборки существенны для морфогенеза .

  Изучение структуры Б. даёт возможность переходить к их синтезу. В 1955 была выяснена структура инсулина , молекула которого состоит из двух сравнительно коротких полипептидных цепей (21 и 30 аминокислотных остатков). Вслед за этим была раскрыта первичная структура гемоглобина , рибонуклеазы, трипсина и ряда других Б. (рис. 3 ). Путём химического синтеза сначала были получены сложные пептиды со свойствами гормонов , затем удалось синтезировать гормон инсулин, наконец — фермент рибонуклеазу. Правильность химической формулы инсулина и рибонуклеазы подтвердилась тем, что синтетические Б. не отличались от Б., продуцируемых организмом, ни по физико-химическим свойствам, ни по биологической активности. Установлена полностью или частично первичная структура свыше 200 Б.

  Классификация Б. До сих пор нет единого принципа классификации Б. При делении всех известных Б. на группы учитывают и их состав (строение), физико-химические свойства (растворимость, щёлочность), происхождение и роль в организме. Б. делят на простые — протеины, состоящие только из аминокислот, и сложные — протеиды, в состав молекулы которых входят, кроме аминокислот, и другие соединения. К простым Б. относятся альбумины , глобулины , гистоны , глутелины , проламины , протамины и протеиноиды . К сложным Б. относятся гликопротеиды (содержащие, кроме аминокислот, углеводы), липопротеиды (содержащие липиды), нуклеопротеиды (в их состав входят и нуклеиновые кислоты), фосфопротеиды (содержащие фосфорные кислоты) и хромопротеиды (имеющие пигментные металлосодержащие группы).

  В. А. Белицер .

  Биосинтез Б. — процесс образования Б. из аминокислот в клетках живых организмов. Выяснение механизма этого процесса, имеющего огромное биологическое значение, можно отнести к важнейшим достижениям науки 20 в. Биосинтез Б. идёт при помощи особых сложных механизмов, обеспечивающих упорядоченное воспроизведение специфических Б. уникальной структуры. Механизмы эти едины или весьма сходны для самых разнообразных клеток и организмов, в них принимают участие нуклеиновые кислоты , в особенности рибонуклеиновые кислоты (РНК). Этот процесс идёт с использованием энергии, накопленной в виде аденозинтрифосфорной кислоты (АТФ) (см. Биоэнергетика ).

  Биосинтез Б. происходит на особых рибонуклеопротеидных частицах — рибосомах , состоящих из почти равных количеств рибосомной РНК (р -РНК) и белков. Первичная структура (последовательность аминокислот) синтезирующихся полипептидных цепочек обеспечивается соединением с рибосомами особой матричной, или информационной, рибонуклеиновой кислоты (и-РНК, или м-РНК), которая содержит информацию о специфическом строении Б., «закодированную» в виде последовательного расположения нуклеотидов, составляющих и-РНК. Эту информацию и-РНК получает от дезоксирибонуклеиновой кислоты (ДНК), хранящей и передающей её по наследству. Аминокислоты, прежде чем попасть в рибосомы, активируются, получая энергию от АТФ и образуя соединение с адениловой кислотой. (Активированные аминокислоты представляют собой смешанный ангидрид аминокислоты и адениловой кислоты — аминоациладенилат.) Далее, остаток данной аминокислоты переносится на соответствующую транспортную рибонуклеиновую кислоту (т-РНК). Оба эти процесса катализируются одним и тем же ферментом (аминоациладенилатсинтетазой, или аминоацилт-РНК-синтетазой), специфическим для каждой аминокислоты. Определённой аминокислоте соответствуют одна или несколько специфичных для неё т-РНК. Все т-РНК сравнительно низкополимерны, содержат около 80 нуклеотидных остатков. Они построены по общему плану: в начале цепи находится 5-гуаниловая кислота, а в конце — часто обменивающаяся группировка из двух остатков цитидиловой кислоты и аденозина, к которому и присоединяется остаток аминокислоты. Остаток аминокислоты, соединённый с т-РНК, далее переносится на рибосомы, где и происходит образование полипептидной цепочки Б. (рис. 4 ). Т. о., рибосомная стадия — центральный этап биосинтеза Б. В процессе биосинтеза Б. рибосомы соединяются в цепочки при помощи и-РНК, образуя активные белоксинтезирующие структуры —полирибосомы, или полисомы.

45
{"b":"105919","o":1}