Литмир - Электронная Библиотека
Содержание  
A
A

«Там, где законы прекрасны... можно ли предположить, что всем людям, одаренным творческим даром, будет дана возможность... учить тому, что по своему ритму, напеву, словам нравится самому поэту? Допустимо ли, чтобы мальчики и юноши, дети послушных закону граждан, подвергались случайному влиянию хороводов в деле добродетели и порока? — Как можно! Это лишено разумного основания», — отвечал Платон устами одного из персонажей диалога.[651]

Итак, можно полагать, что Пифагор обратился к исследованию музыкальной гармонии не только из чисто исследовательского интереса, но и в надежде разгадать ее способность воздействовать на человеческую душу. К счастью для него и для всей греческой науки, основные гармонические интервалы оказались подчиненными простым числовым соотношениям. Чтобы установить их, не требовалось особых ухищрений: элементарный расчет показывал, что высота звука обратно пропорциональна длине струны. Трудности начались потом, когда пифагорейцы перешли к физическому толкованию высоты звука, но и здесь они сумели в конце концов приблизиться к верному решению.

Установление пифагорейцами связи между музыкой и математикой повлекло за собой включение гармоники в число математических наук и предопределило все дальнейшее развитие античной науки о музыке. «Античное музыковедение в отличие от современного не ставило своей задачей анализ конкретных музыкальных сторон произведения... Характерной его чертой было стремление к математическому описанию акустических особенностей музыкальной практики».[652] Не случайно среди авторов музыкально-теоретических трактатов было так много выдающихся математиков: Архит, Евклид, Эратосфен, Птолемей. Пифагорейская теория музыки оставалась до конца античности главным образцом в этой области,8 имея лишь одного конкурента — теорию Аристоксена. Хотя Аристоксен и был учеником пифагорейца Ксенофила, он выступил против математической трактовки музыки, ратуя за большее доверие к слуху. Однако и он не мог полностью отказаться от тех приемов изучения музыки, которые сложились в пифагорейской школе.[653]

В основе пифагорейских исследований музыкальной гармонии лежала уверенность в том, что ее можно выразить с помощью простых числовых соотношений. Что же заставило Пифагора искать числовые закономерности в природе, что дало непосредственный импульс к поверке гармонии числом? Правдоподобный ответ на этот вопрос дает космологическая модель Анаксимандра, также представляющая собой попытку применения простых числовых соотношений в объяснении видимого мира. Земля Анаксимандра представляет собой плоский цилиндр, диаметр которого в три раза больше его высоты, а расстояние между небесными телами кратно девяти. Числовые соотношения Анаксимандра были, конечно, чисто спекулятивного происхождения и ни в коей мере не отражали реальной структуры космоса,[654] но в эвристическом плане его идеи могли дать импульс для поисков в природе более точных и выверенных отношений.

Геометрический космос Анаксимандра — это лишь один из примеров господствовавших тогда представлений, в которых отражается столь присущая мировосприятию греков любовь к симметрии, нашедшая яркое выражение в их архитектуре и скульптуре. Разумеется, греческая культура была в этом отношении отнюдь не уникальна. Ее особенность состоит лишь в том, что представления о числовом порядке и геометрической симметрии проявились в ней не только в мифах, фольклоре или арифмологии, но и в зарождающейся науке. Для современника Пифагора Гекатея Милетского тоже характерно стремление уложить доступные грекам географические знания в прокрустово ложе симметричных схем.[655] В греческой медицине мы также наблюдаем поиски неких числовых соотношений, например пропорций пищи по отношению к физическим упражнениям (De victu. 1,2). В гиппократовском трактате «О седмерицах» число семь служит своеобразным структурным принципом, способным организовать все многообразие мира в простую схему.

Попытки Пифагора найти числовую основу музыкальной гармонии лежат, таким образом, в основном русле развития тогдашних отраслей знания — астрономии, географии, медицины. Разница заключается лишь в том, что, в отличие от медицины, в музыке числовые отношения действительно существуют, а найти их с помощью доступных пифагорейцам методов оказалось гораздо проще, чем в астрономии.

Что представляла собою гармоника в период между Пифагором и Архитом? Свидетельств на этот счет весьма мало, но и они позволяют проследить некоторые линии ее развития. Пифагор установил, какие числовые соотношения, в соответствии с длиной струны, выражают наиболее устойчивые гармонические интервалы. Октава была выражена через отношение 12:6 (2:1), кварта — 12:9 (4:3) и квинта — 12:8 (3:2). Все эти числа образуют уже знакомую нам «музыкальную» пропорцию (12:9 = 8:6), в которой 8 является средним гармоническим, а 9 средним арифметическим между двумя крайними членами.[656] Характерно при этом, что числа, выражающие первые три гармонических интервала, составляют известную пифагорейскую тетрактиду (1, 2, 3, 4). Этот факт наложил свой отпечаток на пифагорейскую гармонику, которая исходила впоследствии из того, что все гармонические интервалы могут быть выражены с помощью чисел, входящих в тетрактиду. Соответственно те интервалы, которые не укладывались в эти числа, гармоническими не считались.

Деление октавы на квинту и кварту (2:1 = 3/2 : 4/3) было, вероятно, известно уже Пифагору. Установление того факта, что октава не может быть разделена на две равные части, ибо геометрическое среднее между входящими в нее числами равно \/2, следует связывать с Гиппасом, открывшим иррациональность; К найденным Пифагором трем интервалам Гиппас, по свидетельству Боэция (18 А 14), добавил еще два: двойную октаву (4:1) и дуодециму, состоящую из октавы и квинты (3:1).[657] Оба новых интервала по-прежнему выражались с помощью первых четырех чисел. Именно эти пять интервалов, по словам Птолемея (Harm. 1,5, р. 11 ff), пифагорейская теория музыки признавала созвучными, оставляя в стороне другие, например ундециму (8:3).[658] Весьма вероятно, что именно Гиппас исключил ундециму из числа созвучных интервалов.[659]

Теоретическим обоснованием этого служил, разумеется, не только тот факт, что ундецима не укладывалась в рамки тетрактиды. Судя по свидетельствам Птолемея и Боэция (18 А 14),[660] пифагорейская гармоника во времена Гиппаса представляла собой уже развитую теорию. Ноты одинаковой высоты сравнивались в ней с равными числами, а разной высоты с неравными. Все числа при этом должны были быть целыми. Тона неравной высоты делились на симфонные (созвучные), т. е. такие, которые сливаются при одновременном появлении, и диафонные, которые, хотя и признавались музыкальными, к созвучным не относились. С симфонными интервалами сравнивались числа, состоящие друг с другом в двух типах отношений: эпиморных и кратных.

Эпиморным называлось отношение чисел α и 6, в котором а равно b плюс часть b (а = b + b/n), следовательно, а:b = (n + 1) : n. Этому соотношению удовлетворяют, например, кварта (4:3) и квинта (3:2). Кратным же отношением считалось такое, при котором b является частью а (а = nb), следовательно, а:b = n:1. Под это соотношение, которое пифагорейцы признавали наилучшим, подходит, например, октава (2:1) или дуодецима (3:1). В то же время ундецима (8:3) вообще не считалась симфонным интервалом, так как ее отношение не является ни эпиморным, ни кратным.

вернуться

651

Leg. 656с, перевод А. Егунова; ср. Res. 424с.

вернуться

652

Герцман Е. Античное музыкальное мышление. Ленинград 1986, 16. 8 Barbera. Persistence, passim.

вернуться

653

Barker A. Music and Perception: A Study in Aristoxenus, JHS 98 (1978) 9-16; Barbera. Persistence, 127 ff; Belis A. Aristoxene de Tarente et Aristote: he Tratte d'harmonique. Paris 1986.

вернуться

654

Сходные идеи мы встречаем еще задолго до рождения философии и науки, например в «Теогонии» Гесиода (720 ff), где расстояние между небом, землей и подземным миром также кратно девяти.

вернуться

655

Krafft F. Geschichte der Naturwissenschaft I. Freiburg 1971, 168 ff.

вернуться

656

См. выше, IV,2.3.

вернуться

657

См.: Zaminer F. Konsonanzordnung und Saitenteilung bei Hippasos von Metapont, JSIM (1980/81) 231-240.

вернуться

658

Поскольку Архит (47 А 16) признавал еще и терции, можно полагать, что у Птолемея речь идет о пифагорейской гармонике V в.

вернуться

659

См.: Barbera A. The Consonant Eleventh and the Expansion of Musical Tetractys: A Study of Ancient Pythagoreanism, JMT 28 (1984) 101-223.

вернуться

660

Эта часть «Наставления к музыке» Боэция (II,19) представляет собой перевод не дошедшего до нас трактата Никомаха.

49
{"b":"907242","o":1}