На этапе складирования и упаковки Cainiao Smart Logistics Network использовала технологию обработки больших данных для настройки «умного» складирования товаров. В сочетании с релевантными данными по товарам и логистике автоматизированные склады Cainiao могут прогнозировать то, насколько ходовым будет товар, и в зависимости от этого производить умную настройку склада и полок с товарами, максимально уменьшая количество узлов в перевозке товара, сокращая путь его перемещения, увеличивая эффективность логистики и хранения [41]. «Умный» склад компании Cainiao показан на рисунке 3.3.
Помимо этого, Cainiao Smart Logistics Network, опираясь на большие данные и технологию искусственного интеллекта, реализовала «умную» упаковку. Как правило, в традиционных заказах упаковка товара выбирается сотрудником на основании его опыта, что имеет низкую эффективность и большую вероятность неэкономного использования крупногабаритной картонной тары. С помощью больших данных и технологии искусственного интеллекта склады Cainiao знают габариты и характеристики товара до его поступления на склад и могут автоматически распределять заказы в наиболее подходящие картонные упаковки и подбирать оптимальные способы укладки. Умная упаковка позволяет сэкономить в среднем на 5 % больше расходного материала, чем в случае, если бы соответствующие решения принимал человек. Это не только снижает себестоимость упаковки, но и является способом, более природосберегающим.
Рисунок 3.3. «Умный» склад компании Cainiao Smart Logistics Network (Юй Лянь / vcg.com)
В отношении распределения заказов и планирования маршрутов Cainiao, опираясь на систему обработки больших данных Hailiang (Hylanda) и систему Alibaba Cloud, предложила проект основанного на больших данных «умного» распределения заказов с электронными накладными Cainiao в качестве носителя, то есть позволяющий заменить ручное распределение заказов на основанное на технологиях больших данных. Результатом стала не только максимальная оптимизация планирования маршрутов доставки экспресс-почты, но и значительное сокращение числа ошибочных операций. Если при традиционном ручном распределении заказов частота ошибок составляет 5 %, после внедрения «умного» распределения заказов степень его точности в компаниях экспресс-доставки достигла более 98 %, эффективность складской рутинной сортировки повысилась более чем на 50 % [40]. В настоящее время этот проект одна за другой начинают использовать ведущие китайские логистические компании, что приводит к огромному росту эффективности движения посылок в сортировочных центрах [43].
Большие данные открыли для Cainiao Smart Logistics Network множество возможностей и в отношении доставки на «последней миле». Платформа логистических данных Cainiao Smart Logistics Network, собирая данные продавцов, логистических компаний, а также метеоданные, данные о дорожной обстановке и другие данные из различных ичсточников и выполняя глубокую предобработку огромного массива информации по товарам, транзакциям, пользователям и информации социальных логистических сетей на платформе Alibaba, обеспечивает цифровизацию и визуализацию логистических процессов. Она умеет прогнозировать перевозки, осуществляемые всеми крупными логистическими компаниями Китая на протяжении всех цепочек движения посылок, и снабжать их соответствующими оповещениями, благодаря чему логистические компании могут в режиме реального времени иметь полное представление об «ожидаемом количестве посылок» и «оповещениях о степени загруженности» для каждого звена логистической сети. В то же время благодаря платформе продавцы имеют понимание положения дел в логистических компаниях и на этом основании могут выбрать подходящую компанию для доставки своих товаров и достижения цели «умной» логистики, то есть более быстрой и безопасной доставки товара в руки клиента.
На всех этапах процесса – от прогноза спроса, упаковки и хранения до сортировки и доставки – большие данные принесли безграничные возможности для усовершенствования и обновления смарт-логистики, благодаря чему логистическая индустрия может предоставить более качественные услуги в более короткие сроки, реализуя таким образом более «близкую» «последнюю милю».
3.3. Данные открывают дороги, или Путешествия без помех и промедлений
Ключевой фигурой в сфере обращения туристического рынка является турист. Не товар, но туристический поток зачастую стимулирует распространение информации о связанных с путешествиями товарах. В этом смысле информация является базовым содержанием туристической индустрии. И большие данные предоставили совершенно новые возможности для интеллектуального отбора данных в сфере индустрии туризма, управления ими, их обработки, анализа и применения.
Описывая движение людских потоков, большие данные создают возможности для туристического бизнеса.
Mafengwo (кит. 马蜂窝) – известная китайская торговая и сервисная платформа для самостоятельных путешествий, созданная на базе стратегии персонализированных путешествий. Основным ресурсом Mafengwo являются превышающее 100 миллионов число зарегистрированных пользователей и данные создаваемого ими пользовательского контента (User Generated Content, UGC). Согласно статистике, пользователи Mafengwo ежемесячно создают более 130 тысяч записей о путешествиях, количество пользовательских комментариев превышает 180 миллионов, число уникальных пользователей сайта – более 130 миллионов, при этом среднемесячное количество активных пользователей превышает 80 миллионов. Опросы пользователей, создание контента, глубокие просмотры и оценки, а также информация о совершаемых пользователями на Mafengwo транзакциях – всё это сформировало огромный массив источников больших данных. Объём ежедневно создаваемых на Mafengwo новых данных превышает 3 терабайта, а всего на платформе охвачено более 50 миллионов достопримечательностей (Point of Interest, POI) по всей земле. Эти цифры поистине потрясают [45]. В настоящее время Mafengwo из чисто туристической платформы трансформировалась в платформу туризма и электронной коммерции, торговый оборот которой всего за три года достиг 10 миллиардов юаней. Ключевым фактором, стоящим за осуществлённым Mafengwo стремительным увеличением объёма операций, стал анализ и применение больших данных пользовательского контента, связанного с путешествиями.
В широком смысле под пользовательским контентом понимаются публикуемые пользователями в сети и обладающие определённой новизной тексты, изображения, аудио- и видеофайлы. С развитием Интернета данные пользовательского контента, касающегося путешествий, например: оставляемые путешественниками в сети комментарии, их блоги, распространяющиеся пользователями в социальных сетях тексты, изображения и другие виды контента – стали новым важным источником больших данных в сфере путешествий, который имеет чрезвычайно высокую прикладную ценность с точки зрения прогнозирования потребительского спроса, развития туризма и других аспектов. Например, известное американское туристическое онлайн-агентство Travelocity применяет анализ больших данных в отношении ежедневно меняющихся спроса и предложения, установления цены, наличных запасов и рекламы. Используя лучший «движок» для анализа транзакций и рекомендаций, Travelocity продвигает персонализированные товары целевым потребителям, помимо этого, с помощью аналитических моделей результаты передаются в смежные приложения, чтобы помочь разработчикам соответствующих приложений своевременно принимать решения.
Mafengwo – одна из самых успешных с точки зрения использования больших данных пользовательского контента китайских компаний. С помощью больших данных Mafengwo находит пользователей и формирует стратегии. Человек, прежде чем принять решение о путешествии, может на протяжении долгого времени производить на Mafengwo действия, связанные с поиском и просмотром контента, например, просматривать релевантные для его места назначения записи других путешественников и рекомендации по маршрутам или просить других путешественников дать свои комментарии и т. п. Осуществляя интеллектуальный отбор соответствующих данных, Mafengwo может нарисовать панорамный портрет целой потребительской группы, точно подобрать высококачественные конечные туристические товары для конкретного пользователя, достигая персонализации и «потребности в том, что увидел». В то же время можно с соответствии с тенденциями спроса, демонстрируемого огромным количеством пользователей, исходя из результатов анализа больших данных, улучшить предложение на туристические товары, что повлечёт за собой соответствующее увеличение поставок, кроме того, можно в зависимости от разных категорий пользователей улучшить презентацию своего товара и возможности по предоставлению услуг (продаж). Кроме того, и после совершения продажи на платформе Mafengwo создаются большие объёмы данных пользовательского контента, связанного с покупкой и оценкой, например, новые туристические заметки и комментарии, что, в свою очередь, ведёт к обратной оптимизации товара и ориентации контента [45].