Литмир - Электронная Библиотека
A
A

То же самое неизбежно верно для других огибающих кривых растущих технических возможностей. Самые большие ракеты могут производить гигаватты энергии за очень короткий период старта, но это не имеет отношения к мощности великого множества машин, работающих на благо современной цивилизации. Большинство электродвигателей в нашей технике имеет мощность меньше, чем может обеспечить хорошо взнузданная лошадь: стиральным машинам нужно 500 Вт, а откормленная лошадь легко дает 800 Вт. Типичная или условная мощность паровых турбин в крупных электростанциях остается стабильной с 1960-х годов: на новых угольных или газовых электростанциях преобладают установки мощностью 200–600 МВт, а турбогенераторы мощностью 1 Гвт используются в основном на более крупных атомных электростанциях. И мощность типичных автомобилей немного выросла лишь потому, что они стали тяжелее, а не потому, что им нужно больше мощности, чтобы доехать от одного светофора до другого или поддерживать разрешенную скорость на автостраде – для равномерной езды со скоростью 100 км·ч по ровной дороге достаточно силы тяги приблизительно в 11 кВт/ч на тонну массы автомобиля (Besselink et al., 2011). И снова синтетическая восходящая траектория состоит из несопоставимых прогрессий, не подразумевающих единообразной тенденции к постоянному росту замещающих феноменов.

В истории существует достаточно примеров технических достижений, не демонстрирующих автоматического, строго последовательного ускорения показателей. Сталевары пользовались мартеновскими печами почти век после того, как довели их применение до совершенства, а проводной дисковый телефон мало изменился со времен своего появления в 1920-х годах и внедрения кнопочных моделей в 1963 году (Smil, 2005; 2006b). И перспективы долгосрочной траектории любого гиперболического роста на Земле не вызывают сомнений: он должен либо прекратиться, либо перейти в ограниченную прогрессию, которая может стать частью гомеостатического сосуществования человека и биосферы, включая конечный верхний предел содержания информации во внешней памяти (Dolgonosov, 2010).

Модели ограниченного роста

В первую очередь это траектории жизни: биосферная масса перерабатываемых питательных веществ допускает невероятное разнообразие видовых генетических выражений и мутаций, но ставит фундаментальное ограничение на производительность первичной продукции (фотосинтеза) и, следовательно, на накопление вторичной продукции (гетеротрофного метаболизма разнообразных организмов от микробов до самых крупных млекопитающих). Эти ограничения проявляются в процессе внутри- и межвидовой конкуренции микроорганизмов, растений и животных за ресурсы путем хищничества и вирусной, бактериальной и грибковой инфекции, и все многоклеточные организмы имеют внутренние пределы роста, обусловленные апоптозом – запрограммированной гибелью клеток (Green, 2011).

Ни одно дерево не растет до небес, как и ни один артефакт, структура или процесс; и модели ограниченного роста характеризуют развитие машин и технических возможностей так же, как описывают рост населения и расширение империй. Все процессы распространения и внедрения неизбежно должны соответствовать этой модели: не важно, быстрый или медленный рост демонстрирует траектория на начальном этапе – в конце концов за ним последует значительное замедление темпов роста по мере того, как процесс асимптотически приближается к насыщению и часто достигает его (иногда после многих десятилетий распространения) всего за несколько процентов, даже за доли процентов до максимума. В 1880 году ни в одном доме не было электричества, но сколько зданий в городах Запада не подключено к электричеству сегодня?

Учитывая распространенность феноменов, демонстрирующих ограниченный рост, неудивительно, что многие исследователи стремились вписать их в разнообразные математические функции. Два основных класса траекторий ограниченного роста включают S-образный (сигмоидальный) и ограниченный экспоненциальный рост. В десятках работ даны описания оригинальных производных и последующих модификаций этих кривых. Они рассмотрены в обширных обзорах (Banks, 1994; Tsoularis, 2001), а лучший обзор, пожалуй, приведен в таблице S1 у Мирвольда (Myhrvold, 2013), где систематически сравниваются уравнения и ограничивающие условия для более 70 нелинейных функций роста.

S-образный рост

S-образные функции описывают множество естественных процессов роста, а также внедрение и распространение инноваций, будь то новые промышленные методы или потребительские товары. Изначально медленный рост ускоряется в точке нижнего изгиба, за которым следует быстрый подъем, темп которого в конце концов замедляется, формируя второй изгиб, за которым следует замедленный подъем, так как рост становится минимальным и значения приближаются к максимальной границе конкретного параметра или к полному насыщению рынка. Наиболее известная и распространенная функция с S-образной траекторией описывает логистический рост.

В отличие от экспоненциального (неограниченного) роста, увеличение темпа которого пропорционально текущему значению, относительное приращение логистического (ограниченного) роста уменьшается по мере приближения растущего значения к максимально возможному уровню, который в экологических исследованиях обычно называют предельной нагрузкой. Подобный рост интуитивно кажется нормальным:

Обычно население медленно растет с асимптотического минимума, затем быстро множится и медленно движется к нечетко определенному асимптотическому максимуму. Два конца кривой роста населения в целом определяют всю кривую между ними: чтобы так начаться и так закончиться, кривая должна пройти через точку перегиба, это должна быть S-образная кривая (Thompson, 1942, 145).

Формальное определение логистической функции восходит к 1835 году, когда Адольф Кетле (1796–1874; рис. 1.9), бельгийский астроном и в то время ведущий статистик Европы, опубликовал революционную работу под названием Sur l’homme et le développement de ses facultés, ou Essai de physique sociale («О человеке и развитии его способностей, или Эссе по социальной физике»), где отметил невозможность продолжительного экспоненциального роста любого населения (Quetelet, 1835).

Кетле предположил, что силы, противоположные неограниченному развитию и росту населения, возрастают пропорционально квадрату скорости, с которой оно возрастает, и попросил своего ученика, математика Пьера Франсуа Ферхюльста (1804–1849; рис. 1.9), дать формальное решение и затем применить его к лучшим доступным статистическим данным. Ферхюльст согласился и сформулировал первое уравнение, выражающее ограниченный рост населения в короткой публикации в альманахе Correspondance Mathématique et Physique («Работы по математике и физике») (Verhulst, 1838; перевод на английский язык опубликован Vogels et al., 1975). Логистическая модель описана с помощью дифференциального уравнения

От микроорганизмов до мегаполисов. Поиск компромисса между прогрессом и будущим планеты - i_012.jpg

где r – скорость максимального роста, а K – максимально достижимая величина, известная в исследованиях экологии и населения как предельная нагрузка.

От микроорганизмов до мегаполисов. Поиск компромисса между прогрессом и будущим планеты - i_013.jpg

Рис. 1.9. Адольф Кетле и Пьер Франсуа Ферхюльст. Гравюра на стали из коллекции изображений XIX века, принадлежащей автору

Чтобы проверить возможность применения уравнения роста, Ферхюльст сравнил ожидаемые результаты с относительно короткими периодами данных переписей населения во Франции (1817–1831), Бельгии (1815–1833), графстве Эссекс (1811–1831) и России (1796–1827), и хотя он обнаружил «очень точное» совпадение с данными по Франции, он сделал верный вывод (учитывая малый объем данных), что «только будущее откроет нам истинный образ действий сдерживающей силы…» (Verhulst, 1838, 116). Семь лет спустя в более объемной работе он решил «назвать кривую логистической» (Verhulst, 1845, 9). Он никогда не объяснял, почему назвал ее именно так, но в период его жизни термин использовался во Франции для обозначения искусства вычислений в целом; возможно, также он использовал слово «логистический» в военном значении (управление резервами), подразумевая арифметическую стратегию (Pastijn, 2006).

16
{"b":"823404","o":1}