Литература
1. Строков А.А. История военного искусства. СПб.: Полигон, 1994. Т. 4-5.
2. Пещеров Г.И. Мобилизация войск: чему учит исторический опыт // Военная мысль. 2003. № 2. С. 69-72.
3. Федоров В.Ф., Погорелое А.В., Кобызев О.Ю., Байбородин В.А. Проблемы подготовки и накопления мобилизационных ресурсов // Военная мысль. 2003. № 7. С. 6-15.
4. Крайг Г Дж. Психология развития. СПб.: Питер. 2000. 992 с.
5. Новицкий В.Ф. Мировая война 1914-18 гг. Кампания 1914 года в Бельгии и Франции. М.: Воениздат, 1938. Т. 1. 337 с.
6. Урланис Б.Ц. История военных потерь. СПб.: Полигон. 1994.560 с.
7. Митюков Н.В. Способ оценки количества военных, участвующих в вооруженном конфликте // Конфликтология: междисциплинарные исследования: Статьи и сообщения междунар. научн. практич. конф. «Конфликт и личность в изменяющемся мире» (2-5 октября 2000 г.). Ижевск: Изд-во УдГУ, 2000. С. 70-75.
8. Керсновский А.А. История русской армии. В 4 т. М.: Голос, 1992-94.
9. Залесский К.А. Первая мировая война. М.: Вече. 2000. 576 с.
Другие работы автора по данному вопросу:
1. Митюков Н.В. Выбор функции для аппроксимации мобилизационного развертывания войск // Вестник ИжГТУ. 2000. № 2. С. 14-16.
2. Митюков Н.В. Методика количественной и качественной оценки военнообученных резервов // Клио: Журнал для ученых. №2(5). СПб.: Нестор, 1998. С. 198-202.
3. Митюков Н.В. Моделирование военных операций // Информационные технологии в инновационных проектах: Труды III междунар. научн.-техн. конф. (Ижевск, 23-24 мая 2001 г.). Ижевск: Изд-во Ижевского радиозавода, 2001. С. 57-59.
4. Митюков Н.В. Моделирование процесса мобилизационного развертывания // Вестник ИжГТУ. 2001. № 1. С. 47-49.
С.А.Мокроусов[197], Н.В.Митюков[198]
Оценка эффективности применения ракетно-артиллерийского вооружения по опыту арабо-израильского конфликта
Широкое распространение разнообразных противотанковых методов привело к тому, что в настоящее время появилась насущная необходимость строгого структурирования того оптимального круга задач, для которого наиболее эффективно то или другое средство. С одной стороны, это позволяет повысить возможности противотанковой обороны, а с другой - снизить затраты по эксплуатации. К сожалению, к настоящему времени сравнительная оценка эффективности проводилась исключительно эмпирически, на основании чего потом разрабатывались наставления, рекомендации и даже имитационные модели, в первую очередь обучающей направленности. Между тем, имитационные модели позволяют не только пользоваться базами данных по боевому опыту , но самим генерировать эти базы, когда боевой опыт казалось бы дает абсолютно невнятные результаты.
Так например, широкое применение ракетного оружия во время арабо-израильских войн и продемонстрированные им возможности дали ряду военных специалистов повод для явно волюнтаристского вывода о смерти ствольной артиллерии. Попытаемся при помощи имитационных моделей проанализировать сильные и слабые стороны бронебойного снаряда и противотанковой ракеты.
В качестве объекта борьбы был выбран основной танк израильских сухопутных сил «Центурион», схема бронирования которого приводится в работе [1] (рис. 1). Сведения о противотанковой пушке МТ-12, 35-мм подкалиберном противотанковом снаряде для нее и противотанковой ракете 9М117 «Кастет» можно почерпнуть из работы Р. Д. Ангельского [2], а также из глобальной сети Интернет.
Рис. 1. Схема бронирования танка Центурион Mk IX
Методика проведения исследований следующая. Танк «Центурион» виртуально обстреливался с разных дистанций противотанковым снарядом и ракетой, после чего замерялись дистанции пробивания его брони и строилась диаграмма безопасности для данного танка, подвергшегося обстрелом данным видом боеприпаса. Для проведения расчетов использовалась разработанная авторами программа внешнебаллистического расчета «Artillery» [3], идентификация которой осуществлялась по таблицам стрельбы 122-мм гаубицы образца 1938 г. [4].
По тактико-техническим характеристикам бронепробиваемость противотанковой ракеты комплекса «Кастет» составляет 660 мм на дальности от 100 до 4000 м. Для определения пробиваемой продкалиберным снарядом брони была выбрана эмпирическая формула Круппа. Поскольку в классическом виде она обычно цитируется по работе Н. Окуна [5], т.е. в американской системе мер и весов, после преобразования в систему Си, и учета того факта, что для бронирования танка «Центурион» Mk IX коэффициент качества брони составляет примерно 660, а также подстановки данных по калибру и массе снаряда пушки МТ-12, получается следующая полуэмпирическая формула для определения толщины пробиваемой брони В (мм):
В = sina*sinb (v / 0,305)1,25/109,41,
где а и b - угол между осью снаряда и поверхностью брони соответственно в вертикальной плоскости (угол падения) и в горизонтальной плоскости (курсовой угол встречи); v - скорость снаряда при ударе о броню, м/с.
Результаты расчетов сведены в нижеследующую таблицу.
Следует заметить, что для расчета предельных дальностей поражения боковой брони корпуса необходимо рассчитать эквивалентную толщину боковой брони корпуса, состоящую из навесного бронелиста толщиной 6 мм, и бронелиста корпуса танка, толщиной 51 мм, наклоненного под углом 12° к вертикальной плоскости.
Предельные дальности поражения (м) при разных углах встречи с бронебойным снарядом
Угол | Правый и кормовой бронелисты башни | Левый бронелист башни | Лобовой бронелист корпуса | Кормовой бронелист корпуса | Бортовой бронелист корпуса |
0° | 2490 | 2465 | 1260 | 5020 | 3480 |
5° | 2485 | 2460 | 1250 | 4980 | 3460 |
10° | 2465 | 2445 | 1228 | 4935 | 3450 |
15° | 2435 | 2415 | 1185 | 4893 | 3410 |
20° | 2385 | 2365 | 1130 | 4780 | 3375 |
25° | 2325 | 2308 | 1050 | 4670 | 3320 |
30° | 2250 | 2230 | 955 | 4510 | 3250 |
35° | 2158 | 2135 | 834 | 4310 | 3175 |
40° | 2038 | 2010 | 693 | 4090 | 3080 |
45° | 1890 | 1860 | 522 | 3810 | 2955 |
50° | 1715 | 1692 | - | 3560 | 2810 |
55° | 1492 | 1472 | - | 3370 | 2635 |
60° | 1227 | 1195 | - | 3175 | 2418 |
65° | 875 | 845 | - | 2930 | 2145 |
70° | - | - | - | 2615 | 1760 |
75° | - | - | - | 2160 | 1210 |