Природа и история у Шпенглера радикально разделены тем, что природа может подвергаться счислению и подлежит счислению, коль она так устроена. А вот история неисчислима, а потому не имеет отношения к математике. Прогноз всегда будет опровергнут, потому что будущее нам не принадлежит – мы не знаем, что оно из себя представляет. Попытка заглянуть в будущее всегда терпит неудачу, но без таких попыток переживание человеком истории невозможно. Человек скорее пытается почувствовать будущее, чем исчислить его параметры – хотя бы какие-нибудь.
Будучи знаком с современной ему математикой, Шпенглер, как ни странно, считал ее культурно зависимой – «стиль какой-либо возникающей математики зависит от того, в какой культуре она коренится, какие люди о ней размышляют». Исходя из наших представлений о математике, следует заявить, что математика – это особая культура мышления, которая в некоторой части становится доступной тем, кто избрал популярную профессию программиста. Но все же настоящая математика – это таинство иной культуры, которая выбивается из любых культурных норм.
Натуральный ряд чисел – основа математики. Да и в целом миропонимания, поскольку за каждым натуральным числом скрывается определенная «философия», акт мышления. Бесконечность познания выражена в бесконечности натурального ряда, а локальная конечность – в ограниченном наборе операторов. Как и в природе: законов мало, объектов, к которым они прилагаются – много. Проблема состоит в том, где разумно оборвать натуральный ряд, чтобы не выдумывать несуществующие объекты мышления? Скорее всего, его оборвать нельзя – если смыслы в начале ряда цепляются за каждое число, то дальше плотность смыслов падает, потому что множество цифр можно заменить так же, как и иррациональные – два числа и оператор между ними[3].
У единицы нет физического образа. Она несет в себе все исчисление, не тревожа его в умножении и устраняя при делении любого числа или функции на себя, оставаясь незримой константой, к которой стремятся все сходящиеся ряды. Галилей писал в «Беседах»: «Если какое-либо число должно являться бесконечностью, то этим числом должна быть единица: в самом деле, в ней мы находим условия и необходимые признаки, которые должно удовлетворять бесконечно большое число, поскольку оно содержит в себе столько же квадратов, сколько кубов и чисел вообще… Единица является и квадратом, и кубом, и квадратом квадрата и т. д… Отсюда заключаем, что нет другого бесконечного числа, кроме единицы. Это представляется столь удивительным, что превосходит способность нашего представления». Безмерное понимается (точнее, метафизические предощущается) в единичном, счет – до начала всякого счета. Единица представляет мысль о целостности уникальности и божественности. Она же и основа счета – «один, один, один…» Неразличимые объекты именно так и считаются. Но стоит идентичное различить хоть в чем-то (местоположении, времени…), и счет стронется с мертвой точки: «Один, два, три…».
Пифагор полагал, что первообразы и первоначала не поддаются изложению в словах, поэтому и приходится для ясности обучения прибегать к числам… Все разнообразие окружающего мира состоит из единичных вещей и событий, и самый первый взгляд не видит в нем никакого повторения. Отсюда – первичный статус единичного во всяком познании. Единичное символизируется как число – единица. Также единица символизирует понимание личного уникального «я»: один перед Богом, и не на кого свалить свои грехи. Отпадение от Бога означает неизбежную гибель: социум уже ничем не сплотить: без Бога одиночные «я» теряют понятие греха и связь с другими «я» через Бога. Только в Боге создается единодушие, единочувствие, целостность – что пифагорейцы называли Единицей (Порфирий, «Жизнь Пифагора»).
Как только появляется различие, неравенство, разделение, у пифагорейцев обнаруживается понятие о Двоице. Число «2» обнаруживается в виде отрицательной степени расстояния в законе всемирного тяготения и законе притяжения разноименных зарядов с «божественной» точностью, как только мы определяемся, что поле распространяется в трехмерном пространстве. То есть, точность здесь – не результат исчисления или теории, а результат конвенции.
В геометрии теорема Пифагора стала переходом в двумерное пространство из актуальной одномерности – громадным рывком мысли, переоткрытием природы, не случайно оставшимся таинством пифагорейской секты. Теорема Пифагора была прорывом – восстановлением божественной природы чисел, которая была поколеблена видимой невозможностью иррационального числа, представляющего диагональ прямоугольника, поразившей Пифагора настолько, что он счел это открытие сакральным знанием об ограниченности способностей богов.
Шпенглер напоминает про странный позднегреческий миф, согласно которому тот, кто впервые нарушил тайну рассмотрения иррационального и предал ее гласности, погиб при кораблекрушении, «поскольку нескáзанное и безóбразное всегда должны пребывать сокрытыми». «Кто почувствует страх, лежащий в основе этого мифа, – тот самый страх, который постоянно отпугивал греков наиболее зрелого времени от расширения их крохотных городов-государств в политически организованные ландшафты, от устройства широких улиц и аллей с открытыми видами и рассчитанной отделкой, от вавилонской астрономии с ее проникновением в бесконечные звездные пространства и от использования средиземноморских путей, давно открытых кораблями египтян и финикян, – глубокий метафизический страх перед растворением осязаемо-чувственного и настоящего, того именно, чем античное существование как бы огораживало себя защитной стеной, за которой дремало что-то леденящее, бездна и первопричина этого в известной степени искусственно смастеренного и утвержденного космоса, – кто уяснит себе это чувство, тому откроется также последний смысл античного числа, меры, противопоставленной безмерному, и высокий религиозный этос, заключенный в его ограничении».
Земли у греков было много, но плотная застройка минимизировала затраты на оборону – сооружение стен. Хотя многие города обходились без стен, плотная застройка сама становилась оборонительными рубежами. Ужасные существа и могучие разбойники – это предания микенских времен. Грек их слушал как сказку, но в реальности знал, что путь до соседнего города безопасен, пока нет войны. Безмерность была чужда древнему греку так же, как и современному человеку со смартфоном в руках. Она – предмет размышлений узкого круга людей со сверхчеловеческими задачами.
Вернувшись к «двойке», мы должны увидеть в ней саму возможность мышления, подтвержденную бинарным кодом – наиболее удобным для устройств быстрого счета. Скорость операций перекрывает примитивность кода, состоящего из «нуля» (нет сигнала) и «единицы» (есть сигнал). Сама логика с законом исключения третьего – это тот же бинарный код: «А» и «не А», а третьего не дано. До тех пор, пока сама мысль не создаст зазор между «А» и «не А». Что уже есть посягательство на божественный порядок, где есть только «да» и «нет», а остальное – от лукавого.
Бинарная сущность пола очевидна своими зримыми признаками, но скрыто предопределена генетической разницей мужского и женского, из которого следует масса смыслов, усекаемых извращенцами «третьего пола» и сторонниками замены синтеза мужского и женского бесполыми: родителем-1 и родителем-2.
В теореме Ферма «2» становится определенным рубежом. Более высокие степени для целых чисел невозможно разбить на два целых числа в такой же степени. Теорема была сформулирована в 1637 году, а решена Эндрю Уайлсом с коллегами в 1995 году (публикация на 130 страницах). Поиски доказательства свели с ума тысячи математиков и закончились, когда созрели новейшие математические методы. Сам Ферма привел доказательства только для 4, позднее другие математики доказали теорему для 3, 5, 7. Затем нашлось доказательство для всех простых чисел меньше 100. Наконец, теорема была доказана, и это потребовало продвижения в целом ряде математических дисциплин.