На большом количестве таксонов настоятельно рекомендуется использовать специализированное компьютерное программное обеспечение для использования любого из упомянутых методов. Двумя широко используемыми пакетами, реализующими различные методы, являются PAUP* (Суоффорд, 2002) и PHYLIP (Фельзенштейн, 1993). Если вдруг когда-нибудь получите доступ к любому из них, то стоит изучить их возможности.
5.6. Приложения и перспективы
Вернемся к вопросу о гоминоидной филогении, который звучал по введении в эту главу. Какое дерево можно вывести из данных митохондриальной ДНК? Хотя можно было бы прочитать ответ в специализированной литературе, но предпочтительно, если найдете его самостоятельно. В упражнениях ниже будет возможность применить некоторые методы пройденной главы к данным, начиная либо с необработанных последовательностей, либо с некоторых расстояний, уже вычисленных из последовательностей.
Анализ данных, который впервые выполнил Хаясака с соавторами в 1988 году опирается в первую очередь на использование алгоритма присоединения соседей, как и анализ, который можно легко осуществить с помощью MATLAB. Если есть доступ к специализированному программному обеспечению, предназначенному для применения метода максимальной экономии, максимального правдоподобия или других методов, то настоятельно рекомендуется посмотреть, дают ли эти методы аналогичные результаты.
Кроме того, имейте в виду, что анализ, который делаете, всегда основан лишь на одном конкретном участке ДНК. Исследования, основанные на других ортологичных последовательностях, могут дать разные результаты. Кроме того, существует много подходов к филогенетическому выводу, которые не основаны на последовательностях. Должны быть скрупулёзно изучены доказательства адекватности каждого из используемых методов, прежде чем делать сильные заявления о филогении гоминоидов.
По мере развития методов построения филогенетического дерева из данных последовательности ДНК они были использованы и для изучения ряда других интересных вопросов. Даже беглый обзор высокорейтингового исследовательского журнала, такого как Science, обнаруживает большое количество статей, в которых генетические последовательности используются для исследования эволюции различных видов от общего предка. Вот лишь несколько примеров некоторых недавних приложений.
1. Исследование того, параллельна ли эволюция нескольких видов друг другу: например, эволюцию хозяев и паразитов можно изучить, построив отдельные филогенетические деревья для каждого из них. Сходство топологий деревьев может указывать на то, эволюционировали ли паразиты вместе с хозяином, или паразиты «перепрыгнули» от одного вида хозяина к другому, изучал Хафнер в 1994 году. Аналогичным образом, деревья для двух симбиотических видов, таких как муравьи, растущие грибы и грибы, которые они выращивают, помогают указать, как далеко в эволюционной истории простирается симбиотическое партнерство. Эти вопросы изучали Чапел и Хинкл в 1994.
2. Определение вероятных источников инфекции вируса иммунодефицита человека (ВИЧ) путем построения деревьев из последовательностей ВИЧ у ряда инфицированных лиц: Было несколько судебно-медицинских применений этого, к случаям СПИДа во Флориде, как следует из публикаций Альтмана 1994 года и Оу 1992 года, а так же их приложения к делу врача, обвиняемого в умышленном введении ВИЧ бывшему любовнику, исследовал Фогель в серии работ 1997 и 1998 годов.
3. Изучением того, вошли ли гены в геном определённого вида через латеральный перенос занимались Андерссон и Зальцберг в 2001 году: когда дерево строится из последовательностей ДНК для гена, это действительно «генное дерево», показывающее отношения генов, которые могут быть, а могут и не быть такими же, как отношения таксонов. Поскольку считается, что некоторые человеческие гены были получены путем латерального переноса от бактерий, заразивших нас, некоторые гены могут оказаться более тесно связанными с некоторыми бактериями, чем с другими млекопитающими. Если подозревается, что ген возник у эукариот в результате латерального переноса от бактерий, то можно построить дерево, используя последовательности генов как эукариот, так и бактерий. Модель кластеризации должна помочь определить, были ли гены латерально переданы или нет.
4. Мониторинг ограничений на охоту на китов: образцы ДНК из китового мяса, продаваемого в качестве пищи, и от китов в дикой природе были использованы для строительства дерева, указывая не только на виды продаваемых китов, но даже на океан происхождения, что доказали Бейкер и Палумби в 1994 году.
5. Исследование гипотезы происхождения человека «Из Африки»: паттерн кластеризации на дереве, построенном из последовательностей ДНК человека из этнических групп по всему миру, должен помочь указать, как человеческие популяции связаны и, следовательно, как и откуда они распространяются. Этим вопросом занимался Канн, опубликовав результаты в 1987 году, и Гиббонс, – в 1992.
Поскольку последовательности, используемые в большинстве опубликованных исследований, легко доступны через Интернет в базах данных, таких как GenBank, можно самостоятельно исследовать набор данных из этих или других исследований.
Филогенетические методы, основанные на последовательностях, все еще активно исследуются биологами, химиками, статистиками, информатиками, физиками и математиками. Есть много проблем, подходов и методов, которые здесь не затронули. То, как последовательности ДНК идентифицируются как хорошие данные, на которых основывается филогения, как эти последовательности выравниваются и как можно измерить уверенность, которую должны иметь в дереве, – это только три из актуальных тем, которые были проигнорированы. Более полные обзоры классических результатов настоящей тематики можно найти в работах Хиллисеталь 1996 года и Ли 1997 года.
Задачи для самостоятельного решения:
Прежде чем пытаться решить предлагаемые задачи, загрузите базу данных primatedata в MATLAB, чтобы получить доступ к этим аспектам и искажениям, упомянутым выше, все из которых происходят из работы Хаясака от 1988 года. Введите команду who, чтобы увидеть имена переменных, создаваемых данным m-файлом.
5.6.1. Массив расстояний Distprimates представляет собой матрицу 12 × 12, с расстояниями, вычисляемыми по 6-параметрической модели подстановки основания. Названия таксонов в порядке записей матрицы находятся в переменной с именем Namesprimates. Выполните алгоритм присоединения соседей для этих данных с помощью команды nj(Distprimates,Namesprimates{:}).
Нарисуйте метрическое дерево, получившееся в результате.
5.6.2. Используйте имеющиеся знания и свой ответ на предыдущую задачу, чтобы изобразить корневое топологическое дерево, которое могло бы описать эволюционную историю пяти гоминоидов, упомянутых во введении.
5.6.3. Сколько возможных некорневых топологических деревьев может описать эволюцию 12 приматов? Сколько возможных корневых топологических деревьев может описать эволюцию пяти гоминоидов упомянутых во введении к главе?
5.6.4. Команды Nameshominoids=Namesprimates(1:5), Dist hominoids=Dist primates(1:5,1:5) извлекут имена и расстояния между первыми пятью приматами, гоминоидами, упомянутыми во введении к этой главе. Используйте программу nj на данных расстояния только для этих пяти, нарисовав полученное метрическое дерево. Согласуется ли полученная топология с топологией, приведенной в задаче 5.6.1? Согласуется ли метрическая структура? Объясните, как могли возникнуть какие-либо расхождения, которые заметили.
5.6.5. Используйте команду Seqhominoids=Seqprimates([1:5],:) для извлечения последовательностей для гоминоидов. Некоторые последовательности имеют пробелы, обозначаемые символом «–». Сайты, где любая последовательность имеет пробел, который должен быть удален перед вычислением расстояний, нужно предварительно отфильтровать. Команды gaps=(Seq hominoids =='-'), gapsites=find(sum(gaps)), Seq nogaps=Seq hominoids, Seq nogaps(:,gapsites)=[ ] найдут и удалят эти сайты. Используя последовательности без пробелов, вычислите расстояние Джукса-Кантора, 2-параметрическое расстояние Кимуры и логарифмическое расстояние. Напомним, что [DJC, DK2, DLD]=distances(Seqnogaps) сделает это легко.