Дальше наступает второй этап: уравнение Эйнштейна гласит, что масса и энергия взаимозаменяемы, так что позаимствованная энергия может быть использована для создания частицы определенной массы. Юкава предположил, что внутри ядра создается такая частица, которую теперь называют пионом. Эта частица, согласно его гипотезе, отвечает за силу притяжения, которая удерживает вместе протоны и нейтроны, совместно называемые нуклонами. Расчеты Юкавы предсказали, что пион создается одним нуклоном, который заимствует из окружающей среды достаточно энергии для его создания. Затем пион перепрыгивает к соседнему нуклону и снова исчезает. За краткий период своего существования, позволенный принципом неопределенности, он становится предметом обмена двух нуклонов и приводит к возникновению силы притяжения, которая притягивает их друг к другу. Этот пион часто считается виртуальной, а не реальной частицей, так как его существование мимолетно.
Точно так же электромагнитную силу между заряженными частицами можно представить в качестве обмена виртуальным фотоном, отличным от реальных фотонов, которые могут сколь угодно долго сохранять свою энергию, конечно, при условии, что их не поглотит атом. Виртуальные частицы, которые можно создать из чистой энергии, называются бозонами. Их также называют частицами-переносчиками взаимодействий, в том смысле что, когда происходит обмен двух других частиц с этой частицей, между ними возникает взаимодействие. Бозоны подчиняются иным квантовым законам, чем называемые фермионами настоящие частицы материи, включая электроны, протоны и нейтроны, из которых состоят атомы, а следовательно, и вся материя вокруг нас. Однако, благодаря работе одного из величайших физиков-теоретиков всех времен стеснительного англичанина Поля Дирака, мы знаем, что из ничего могут создаваться даже фермионы (см. статью «Антивещество»).
На квантовом уровне даже пустое пространство на самом деле не полностью пусто, а кипит активностью: тут и там постоянно возникают и исчезают виртуальные частицы. При рождении пар частица и ее партнер из антивещества создаются из чистой энергии, скажем, из фотона. В обратном процессе, называемом аннигиляцией, частица и античастица сталкиваются и уничтожают друг друга, навсегда исчезая во вспышке света.
Ядерные взаимодействия
Справедливо сказать, что изучение атомного ядра было и остается одной из самых сложных сфер человеческих стремлений. Причина этого кроется в сложной природе сил, которые действуют между компонентами ядра – протонами и нейтронами. Из четырех известных сил природы три важны внутри ядра. Вы уже знакомы с электромагнитной силой, которая отталкивает протоны друг от друга, так как одинаковые заряды отталкиваются, и с так называемым «сильным ядерным взаимодействием», которое притягивает все нуклоны (протоны и нейтроны) друг к другу. Также существует второе ядерное взаимодействие, называемое слабым, которое отвечает за бета-распад. К нему я скоро вернусь.
Именно взаимное влияние отталкивающей электромагнитной силы и притягивающего сильного ядерного взаимодействия обеспечивает стабильность ядра. Так как на расстоянии влияние этих сил меняется, их комбинированный эффект формирует на поверхности ядра энергетический барьер, называемый кулоновским. Он, по сути, представляет собой силовое поле, которое сдерживает протоны в определенном объеме[53].
Точно так же положительно заряженная частица, ударяющаяся о ядро снаружи, может проникнуть внутрь, если она обладает достаточной энергией, чтобы пробиться сквозь кулоновский барьер. Однако эти частицы могут пробиться сквозь барьер и более интересным образом, даже если их энергии для этого недостаточно. Здесь мы встречаемся с еще одной квантовой идеей, которая объясняет не только альфа-распад в радиации, но и причину, по которой Солнце светит, а мы живем в этом мире.
Эта новая идея получила название квантового туннелирования (см. статью на странице 194). Когда альфа-частица, состоящая, как мы теперь знаем, из двух протонов и двух нейтронов, испускается ядром, ей прежде всего приходится преодолеть кулоновский барьер, чтобы вырваться наружу. Но если применить к атомному ядру знакомые нам идеи ньютоновской физики, мы увидим, что это невозможно. Группа из двух протонов и двух нейтронов, тесно связанных вместе, никогда не накопит достаточного количества энергии, чтобы вырваться из ядра.
Антивещество
В группу молодых гениев, которые поставили квантовую механику на твердое математическое основание, наряду с Гейзенбергом, Паули и рядом других ученых входил и Поль Дирак. На самом деле по результатам недавнего опроса Дирак был назван вторым величайшим английским физиком всех времен, уступив лишь Исааку Ньютону.
Стоит отметить, что Дирак входил в небольшое число выдающихся физиков, которые в 1927 году на знаменитом Сольвеевском конгрессе не стали спорить о разных интерпретациях квантовой механики. Его гораздо больше интересовала эстетическая красота математических уравнений, чем их значение!
В 1927 году Дирак доказал, что две разные формулировки теории, предложенные Гейзенбергом и Шрёдингером, математически эквивалентны друг другу. Затем он первым объединил квантовую механику со специальной теорией относительности Эйнштейна посредством вывода альтернативного уравнению Шрёдингера уравнения, которое описывало поведение электронов, движущихся на скорости, стремящейся к скорости света. Однако уравнение Дирака делало странное предсказание, что должна существовать зеркальная электрону частица, или его античастица. Она должна была обладать такой же массой, как электрон, но противоположным зарядом. Такая частица была названа позитроном и через несколько лет обнаружена в ходе эксперимента. Позитрон также называют партнером электрона из антивещества.
Теперь мы знаем, что каждая элементарная частица имеет соответствующую античастицу. Вступая во взаимодействие, они аннигилируют во вспышке энергии, так как все их свойства, кроме массы, исключают друг друга, а масса превращается в чистую энергию. Количество создаваемой энергии можно рассчитать по уравнению Эйнштейна Е=mc2.
Этот процесс может происходить и в обратном порядке, когда чистая энергия преобразуется в материю: фотон, который фактически представляет собой сгусток света, может превратиться в электрон и позитрон в ходе процесса, называемого рождением пар.
Интереснее всего, что пары частица-античастица то и дело возникают повсюду, заимствуя энергию, необходимую для их создания из окружающей среды в соответствии с соотношением неопределенности энергии и времени, и существуя очень короткий промежуток времени, прежде чем аннигилировать снова и вернуть позаимствованную энергию, словно их и не существовало вовсе.
Альфа-распад несложно объяснить с позиции соотношения неопределенности между энергией и временем, как это сделано в упомянутой статье на странице 194. Но, если предпочитаете – и если уж следовать духу этой книги, – его можно понять и с позиции волновой функции альфа-частицы.
Давайте возьмем радиоактивное ядро, которое точно еще не испустило альфа-частицу. Местоположение альфа-частицы описывается волновой функцией, которая заключена внутри ядра, под чем я понимаю, что в это время вероятность ее обнаружения за пределами ядра равняется нулю. Но вместо того чтобы представлять, как альфа-частица катается внутри ядра, подобно крошечному шарику в коробке, пока не наберет достаточной энергии для выхода, мы скажем, что ее волновая функция начинает просачиваться за пределы ядра. По прошествии короткого времени вероятность обнаружения альфа-частицы за пределами ядра мала, большая часть волновой функции по-прежнему находится внутри ядра, тем самым давая высокую вероятность отсутствия распада. Но с течением времени вероятность, которую мы рассчитываем на основании той части волновой функции, которая просочилась за пределы ядра, возрастает и становится значительной.