Литмир - Электронная Библиотека
Содержание  
A
A

Исаак Ньютон полагал, что каждая частица во Вселенной должна подчиняться простым законам движения в результате действия четко определенных сил. Это механистическое представление о мире – которое ученые повсеместно разделяют и сегодня, почти три века спустя, – утверждает, что, какими бы сложными ни были природные явления, все в итоге всегда можно свести к взаимодействию фундаментальных кирпичиков материи. Естественный процесс, такой как шторм на море или перемена погоды, может казаться случайным и непредсказуемым, но это просто следствие его сложности и огромного количества задействованных в нем атомов.

Но в принципе, если бы мы знали точное положение и характер движения каждой частицы в заданной системе, сколько бы их ни было задействовано, с помощью законов Ньютона мы могли бы предсказать, как эти частицы будут двигаться и взаимодействовать друг с другом, а следовательно, и как эта система будет выглядеть в любой конкретный момент будущего. Иными словами, точное знание настоящего должно позволять нам предсказывать будущее. Это привело к ньютонианской идее «механической» вселенной – такой вселенной, где вообще нет никаких сюрпризов, поскольку все, что может случиться, является результатом фундаментальных взаимодействий ее частей. Это учение получило название «детерминизм» (от лат. determinare – ограничивать, определять), поскольку будущее может быть полностью предопределено, если мы полностью знаем настоящее.

Само собой, на практике такой детерминизм возможен лишь в простейших системах. Мы прекрасно понимаем, что метеорологи не могут с полной уверенностью предсказать погоду на завтра. Мы даже не можем заранее узнать, выпадет орел или решка или куда закатится шарик рулетки. В современной физике есть отдельная область под названием теория хаоса, которая утверждает, что для определения будущей эволюции системы ее изначальное состояние необходимо знать с бесконечной точностью. Теория хаоса усложняет практическое применение детерминизма.

И правда, простые механические примеры вроде упомянутых выше меркнут в сравнении с тем, как нам необходимо разобраться в бесконечно сложном устройстве человеческого мозга, чтобы понять концепцию свободы воли. Но принцип всегда один: так как люди состоят из атомов, законы Ньютона должны быть применимы и к их мозгу. В связи с этим, когда мы делаем то, что считаем свободным выбором в отношении чего-то, на самом деле это лишь результат механических процессов и атомных взаимодействий в нашем сером веществе, которое подчиняется детерминистским законам, как и все остальное.

Хотя такой взгляд на вещи довольно печален, вам он может показаться вполне нормальным, поскольку мысль о том, чтобы обладать достаточной информацией, чтобы предсказывать будущее, и вовсе не укладывается в голове. Однако здесь возникает гипотеза: если бы у нас был достаточно мощный компьютер, снабженный достаточным объемом памяти, чтобы сохранить в нем сведения о положении и скорости каждой частицы во Вселенной, то он, вероятно, смог бы рассчитать, как Вселенная будет развиваться.

Одним из самых серьезных сдвигов в человеческом мышлении, произведенных квантовой революцией, стала идея индетерминизма – то есть исчезновения детерминизма вместе с концепцией механической вселенной. Поэтому, как ни жаль мне вам это сообщать, но еще три четверти века назад было доказано, что в качестве научной идеи «судьба» оказалась ложной.

Результат игры в пул

Представьте, как мы с помощью мощного компьютера пытаемся предсказать, что случится в игре в пул, делая предсказание в ту секунду, когда биток ударяется о пирамиду. Каждый шар на столе в этот момент начинает катиться в своем направлении, причем большая часть шаров претерпевает более одного столкновения и отталкивается от бортов. Само собой, компьютер должен знать точную силу первого удара битка и точный угол, под которым он сталкивается с первым шаром пирамиды. Но достаточно ли этого? Когда все шары наконец остановятся – а некоторые из них, возможно, даже закатятся в лузы, – насколько близким к реальности окажется предсказание компьютера? В то время как предсказать результат столкновения двух шаров вполне вероятно, учесть все сложные траектории движения множества шаров практически невозможно. Если хотя бы один шар покатится под немного иным углом, то другой шар, который он мог миновать в изначальной картине, теперь сможет коснуться его, в результате чего обе траектории существенным образом изменятся. И итоговый результат вдруг окажется совсем другим.

Похоже, нам необходимо сообщить компьютеру не только сведения о начальном состоянии битка, но и точное расположение остальных шаров на столе: касаются ли они друг друга, каковы точные расстояния между ними и бортами и так далее. Но даже этого недостаточно. Крошечной пылинки на любом из шаров хватит, чтобы изменить его траекторию на некоторую долю миллиметра или чуть снизить его скорость. И снова это приведет к эффекту домино, который изменит итоговую расстановку. В теории хаоса это называется «эффектом бабочки» – идея заключается в том, что бабочка машет крыльями и тем самым едва заметно изменяет атмосферное давление, что в результате постепенно приводит к серьезному отклонению от того сценария, который развернулся бы, если бы бабочка не взмахнула крыльями, к примеру, вызывая несколько позже грозу на другом конце света, хотя в ином случае этой грозы не случилось бы.

Следовательно, нам нужно предоставить компьютеру точные данные о состоянии поверхности стола. Возможно, в некоторых местах сукно протерто сильнее. Минимальное влияние окажут даже температура и влажность воздуха.

И все же вам может показаться, что в этом нет ничего невозможного. Что в принципе это выполнимо. Само собой, если бы между шарами и столом не было трения, они бы продолжили сталкиваться и расходиться в разные стороны гораздо дольше, а следовательно, нам нужно было бы еще более точно знать изначальное положение шаров, чтобы определить, где они окажутся, наконец остановившись[15].

«И что?» – скажете вы. В конце концов, раз уж мы никогда не сможем узнать все о конкретной системе, нам приходится высчитывать вероятности различных результатов. Чем больше мы знаем, тем с большей уверенностью мы можем сказать, что именно произойдет.

Иногда мы не можем сделать верное предсказание не только из-за собственной неосведомленности, но и из-за неспособности контролировать изначальные условия. Мы не можем даже дважды одинаково подбросить монетку, чтобы повторить полученный в первый раз результат. Пускай мы подбросили монетку и получили решку. Подбросить ее второй раз точно так же, чтобы она перевернулась то же самое количество раз и снова легла решкой вверх, очень и очень сложно.

И снова мы приходим к выводу, что у нас недостаточно информации о системе. В примере с игрой в пул я ни за что не смогу повторить удар и толкнуть биток точно таким же образом, чтобы добиться идентичного итогового результата, при котором все шары окажутся точно на тех же позициях, что и в первый раз. Тем не менее такая повторяемость является сутью ньютонианского мира. Такое детерминистское поведение представляет собой черту ньютоновой, или классической, механики. В квантовой механике все совершенно иначе.

Квантовая непредсказуемость

В квантовом мире царит серьезная непредсказуемость, которую мы не можем списать на свою неосведомленность о точном состоянии изучаемой системы или на практическую неспособность задать изначальные условия. На этом уровне она представляет собой фундаментальную характеристику самой природы. Мы не можем с уверенностью предсказать, что именно случится в квантовом мире не потому, что наши теории недостаточно хороши, и не потому, что нам недостает информации, а потому, что сама Природа функционирует «неопределенным» образом.

Часто выясняется, что в мире атомов мы можем лишь рассчитать вероятности различных результатов. Такие вероятности, однако, определяются не по тому же принципу, которым мы руководствуемся, когда определяем вероятность при броске монеты или игральных костей. Квантовые вероятности вплетены в саму теорию, и мы даже в принципе не можем определить их более точно.

вернуться

15

Они будут постепенно замедляться вследствие сопротивления воздуха и потери энергии из-за отдачи тепла и звука при столкновениях.

11
{"b":"653640","o":1}